Refine Your Search

Topic

Author

Search Results

Technical Paper

Wall Temperature Effect on SI-CAI Hybrid Combustion Progress in a Gasoline Engine

2013-04-08
2013-01-1662
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In order to investigate the effect of the thermal boundary condition on the hybrid combustion, the experiments with different coolant temperatures are performed to adjust the chamber wall temperature in a gasoline engine. The experimental results indicate that increasing wall temperature would advance the combustion phasing, enlarge the peak heat release rate and shorten the combustion duration. While the capacity of the wall temperature effect on the hybrid combustion characteristics are more notable in the auto-ignition dominated hybrid combustion.
Technical Paper

Variable Geometry Turbocharger Active Control Strategies for Enhanced Energy Recovery

2013-03-25
2013-01-0120
This paper describes the development of the control system for a new type of mechanical turbocharger, the Active Control Turbocharger (ACT). The main difference of ACT compared to its predecessor, the Variable Geometry Turbocharger (VGT), lies in the inlet area modulation capability which follows an oscillating (sinusoidal) profile in order to match as much as possible the similar profile of the emitted exhaust gases entering the turbine in order to capturing the highly dynamic, energy content existent in exhaust pulses. This paper describes the development of a new controller in an adaptive framework in order to improve the response of the ACT. The system has been modelled using a one-dimensional Ricardo WAVE engine simulation software and the control system which actuates the nozzle (rack) position is modelled in Matlab-Simulink and uses a map-based structure coupled with a PID controller with constant parameters.
Journal Article

Using Virtual Product Development with Design of Experiments to Design Battery Packs for Electrified Powertrain

2021-04-06
2021-01-0764
Stringent automotive legislation is driving requirements for increasingly complex battery pack solutions. The key challenges for battery pack development drive cost and performance optimisation, growth in architecture solutions, monitoring and safety through lifetime, and faster-to-market expectations. The battery Virtual Product Development (VPD) toolchain addresses these challenges and provides a solution to reduce the battery pack development time, cost and risk. The battery VPD toolchain is built upon scalable, validated sub-models of the battery pack that capture the interactions between the various domains; mechanical, electrical, thermal and hydraulic. The model fidelity can be selected at each stage of the design process allowing the right amount of detail, and available data, to be incorporated. The toolchain is coupled with vehicle simulation tools to rapidly assess performance of the complete electrified powertrain.
Technical Paper

Using Design of Experiments to Size and Calibrate the Powertrain of Range-Extended Electric Vehicle

2020-04-14
2020-01-0849
A Range-Extended Electric Vehicle (REEV) usually has an auxiliary power source that can provide additional range when the main Rechargeable Energy Storage System (RESS) runs out. The range extender can be a fuel cell, a gas turbine, or an Internal Combustion Engine (ICE) bolted to a generator. Sizing the powertrain for a REEV is primarily to investigate the relationship between the capacity of the main RESS and the power rating of the range extender. Worldwide harmonized Light vehicles Test Procedures (WLTP) introduced a Utility Factor (UF) which is a curve used to calculate the weighted test results for the Off-Vehicle Charging-Hybrid Electric Vehicle (OVC-HEV) from the measured Charge Depleting (CD) mode range result, and the Charge Sustaining (CS) mode Fuel Consumption (FC). Therefore, the RESS capacity, the range extender power rating, the control strategy, and the UF are the key factors affecting the weighted FC of a REEV on the test cycle.
Journal Article

Understanding the Fundamentals of Boxer Engine Behavior on Sound Quality

2016-06-15
2016-01-1766
An engine configuration has a significant influence on the sound quality from the powertrain. Whilst the fundamental order content can be readily apparent from the firing order over the engine, or bank of a V engine, some characteristics and how the engine design can influence them requires some more specific investigation. Understanding, on a fundamental level, the aspects of the engine design which influence these characteristics is critical to allow more detailed analysis and development work to be focused appropriately. The configuration of a Boxer engine gives a distinctive sound characteristic producing a unique sound compared to an In-Line configuration. Depending on the application it may be desirable to enhance or subdue some of these characteristics.
Technical Paper

Tribological Behavior of Low Viscosity Lubricants in the Piston to Bore Zone of a Modern Spark Ignition Engine

2014-10-13
2014-01-2859
Most major regional automotive markets have stringent legislative targets for vehicle greenhouse gas emissions or fuel economy enforced by fiscal penalties. Large improvements in vehicle efficiency on mandated test cycles have already taken place in some markets through the widespread adoption of technologies such as downsizing or dieselization. There is now increased focus on approaches which give smaller but significant incremental efficiency benefits such as reducing parasitic losses due to engine friction. Fuel economy improvements which achieve this through the development of advanced engine lubricants are very attractive to vehicle manufacturers due to their favorable cost-benefit ratio. For an engine with components which operate predominantly in the hydrodynamic lubrication regime, the most significant lubricant parameter which can be changed to improve the tribological performance of the system is the lubricant viscosity.
Technical Paper

The Effects on Diesel Combustion and Emissions of Reducing Inlet Charge Mass Due to Thermal Throttling with Hot EGR

1998-02-23
980185
This paper is a complementary to previous investigations by the authors (1,2,3,4) on the different effects of EGR on combustion and emissions in DI diesel engine. In addition to the several effects that cold EGR has on combustion and emissions the application of hot EGR results in increasing the inlet charge temperature, thereby, for naturally aspirated engines, lowering the inlet charge mass due to thermal throttling. An associated consequence of thermal throttling is the reduction in the amount of oxygen in the inlet charge. Uncooled EGR, therefore, affects combustion and emissions in two ways: through the reduction in the inlet charge mass and through the increase in inlet charge temperature. The effect on combustion and emissions of increasing the inlet charge temperature (without reducing the inlet charge mass) has been dealt with in ref. (1).
Technical Paper

The Drive for Minimum Fuel Consumption of Passenger Car Diesels: An Analytical Study to Evaluate Key Architectural Choices

2015-09-06
2015-24-2519
Fuel consumption, and the physical behaviours behind it, have never been of greater interest to the automotive engineering community. The enormous design, development and infrastructure investment involved with a new engine family which will be in production for many years demands significant review of the base engine fundamental architecture. Future CO2 challenges are pushing car manufacturers to consider alternative engine configurations. As a result, a wide range of diesel engine architectures are available in production, particularly in the 1.4 to 1.6 L passenger car market, including variations in cylinder size, number of valves per cylinder, and bore:stroke (B/S) ratio. In addition, the 3 cylinder engine has entered the market in growing numbers, despite its historic NVH concerns. Ricardo has performed a generic architecture study for a midsize displacement engine in order to assess the pros and cons of each engine configuration.
Technical Paper

The Application of Controlled Auto-Ignition Gasoline Engines -The Challenges and Solutions

2019-04-02
2019-01-0949
Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), has the potential to simultaneously reduce the fuel consumption and nitrogen oxides emissions of gasoline engines. However, narrow operating region in loads and speeds is one of the challenges for the commercial application of CAI combustion to gasoline engines. Therefore, the extension of loads and speeds is an important prerequisite for the commercial application of CAI combustion. The effect of intake charge boosting, charge stratification and spark-assisted ignition on the operating range in CAI mode was reviewed. Stratified flame ignited (SFI) hybrid combustion is one form to achieve CAI combustion under the conditions of highly diluted mixture caused by the flame in the stratified mixture with the help of spark plug.
Technical Paper

Study of Flame Speed and Knocking Combustion of Gasoline, Ethanol and Hydrous Ethanol (10% Water) at Different Air/Fuel Ratios with Port-Fuel Injection

2018-04-03
2018-01-0655
In this paper, an experimental study was performed to investigate characteristics of flame propagation and knocking combustion of hydrous (10% water content) and anhydrous ethanol at different air/fuel ratios in comparison to RON95 gasoline. Experiments were conducted in a full bore overhead optical access single cylinder port-fuel injection spark-ignition engine. High speed images of total chemiluminescence and OH* emission was recorded together with the in-cylinder pressure, from which the heat release data were derived. The results show that under the stoichiometric condition anhydrous ethanol and wet ethanol with 10% water (E90W10) generated higher IMEP with at an ignition timing slightly retarded from MBT than the gasoline fuel for a fixed throttle position. Under rich and stoichiometric conditions, the knock limited spark timing occurred at 35 CA BTDC whereas both ethanol and E90W10 were free from knocking combustion at the same operating condition.
Technical Paper

Simulation of the Effect of Intake Pressure and Split Injection on Lean Combustion Characteristics of a Poppet-Valve Two-Stroke Direct Injection Gasoline Engine at High Loads

2018-09-10
2018-01-1723
Poppet-valve two-stroke gasoline engines can increase the specific power of their four-stroke counterparts with the same displacement and hence decrease fuel consumption. However, knock may occur at high loads. Therefore, the combustion with stratified lean mixture was proposed to decrease knock tendency and improve combustion stability in a poppet-valve two-stroke direct injection gasoline engine. The effect of intake pressure and split injection on fuel distribution, combustion and knock intensity in lean mixture conditions at high loads was simulated with a three-dimensional computational fluid dynamic software. Simulation results show that with the increase of intake pressure, the average fuel-air equivalent ratio in the cylinder decreases when the second injection ratio was fixed at 70% at a given amount of fuel in a cycle.
Technical Paper

Simulation Based Hybrid Electric Vehicle Components Sizing and Fuel Economy Prediction by Using Design of Experiments and Stochastic Process Model

2019-04-02
2019-01-0357
The aim of this study is to evaluate the Fuel Economy (FE) over the driving cycle for a 48 Volt P2 technology vehicle with different component ratings (battery and electric machine) in the hybrid powertrain, using simulation and Design of Experiments (DoE) tools. The P2 architecture was selected for this study based on an initial assessment of a wide number of possibilities, using the Ricardo “Architecture Independent Modelling (AIM)” toolset. This allows rapid evaluation of different powertrain options independently of a defined hybrid control strategy. For the vehicle with P2 architecture, a DoE test matrix of battery capacity and electric machine power rating was created. The test matrix was then imported into the simulation environment to perform the driving cycle FE simulations. Then, a 48 V P2 Hybrid Electric Vehicle (HEV) FE emulator model was created and interrogated using model visualisation and optimisation methods.
Journal Article

Rolling Elements Assessment on Crankshaft Main Bearings of Light Duty Diesel Engine

2014-04-01
2014-01-1637
Rolling element bearings are known to give reduced friction losses when compared to the hydrodynamic bearings typically used to support the crankshaft in multi-cylinder engines. This paper describes the design, manufacturing and testing of a modified 4 cylinder light duty Diesel production engine with rolling element bearings applied at the crankshaft main bearings in view of CO2 emission reduction. Selection of the most suitable type of roller bearings for this specific application was made. Technology development through multi-body dynamic simulation and component testing was done to assess the effect on rolling elements performance due to the key challenges inherent to such bearing solution: high instantaneous combustion load, lubrication with low viscosity and contaminated oil, and the cracking process to split the bearing outer raceway.
Technical Paper

Reduction of Methane Slip Using Premixed Micro Pilot Combustion in a Heavy-Duty Natural Gas-Diesel Engine

2015-09-01
2015-01-1798
An experimental study has been carried out with the end goal of minimizing engine-out methane emissions with Premixed Micro Pilot Combustion (PMPC) in a natural gas-diesel Dual-Fuel™ engine. The test engine used is a heavy-duty single cylinder engine with high pressure common rail diesel injection as well as port fuel injection of natural gas. Multiple variables were examined, including injection timings, exhaust gas recirculation (EGR) percentages, and rail pressure for diesel, conventional Dual-Fuel, and PMPC Dual-Fuel combustion modes. The responses investigated were pressure rise rate, engine-out emissions, heat release and indicated specific fuel consumption. PMPC reduces methane slip when compared to conventional Dual-Fuel and improves emissions and fuel efficiency at the expense of higher cylinder pressure.
Technical Paper

Reducing Diesel Emissions Dispersion by Coordinated Combustion Feedback Control

2006-04-03
2006-01-0186
Future demands for very low emissions from diesel engines, without compromising fuel economy or driveability, require Engine Management Systems (EMS) capable of compensating for emissions dispersion caused by production tolerances and component ageing. The Advanced Diesel Engine Control (ADEC) Project, a collaboration between Ricardo and General Motors, is aimed at reducing engine-out emissions dispersion and enabling alternative combustion modes, such as Highly Premixed Cool Combustion (HPCC), in real-world scenarios. This is being achieved by high-level co-ordination of fuel, air and EGR in order to meet the conflicting performance requirements of current and future diesel engines. A sensor feasibility study was undertaken which included a number of new sensing technologies appropriate for future mass production. Two sensor types, namely cylinder pressure and accelerometer sensors, were then selected to demonstrate varying degrees of benefits versus sensor technology cost.
Technical Paper

Progress in Diesel HCCI Combustion Within the European SPACE LIGHT Project

2004-06-08
2004-01-1904
The purpose of the European « SPACE LIGHT » (Whole SPACE combustion for LIGHT duty diesel vehicles) 3-year project launched in 2001 is to research and develop an innovative Homogeneous internal mixture Charged Compression Ignition (HCCI) for passenger cars diesel engine where the combustion process can take place simultaneously in the whole SPACE of the combustion chamber while providing almost no NOx and particulates emissions. This paper presents the whole project with the main R&D tasks necessary to comply with the industrial and technical objectives of the project. The research approach adopted is briefly described. It is then followed by a detailed description of the most recent progress achieved during the tasks recently undertaken. The methodology adopted starts from the research study of the in-cylinder combustion specifications necessary to achieve HCCI combustion from experimental single cylinder engines testing in premixed charged conditions.
Technical Paper

Potentials of External Exhaust Gas Recirculation and Water Injection for the Improvement in Fuel Economy of a Poppet Valve 2-Stroke Gasoline Engine Equipped with a Two-Stage Serial Charging System

2018-04-03
2018-01-0859
Engine downsizing is one of the most effective means to improve the fuel economy of spark ignition (SI) gasoline engines because of lower pumping and friction losses. However, the occurrence of knocking combustion or even low-speed pre-ignition at high loads is a severe problem. One solution to significantly increase the upper load range of a 4-stroke gasoline engine is to use 2-stroke cycle due to the double firing frequency at the same engine speed. It was found that a 0.7 L two-cylinder 2-stroke poppet valve gasoline engine equipped with a two-stage serial boosting system, comprising a supercharger and a downstream turbocharger, could replace a 1.6 L naturally aspirated 4-stroke gasoline engine in our previous research, but its fuel economy was close to that of the 4-stroke engine at upper loads due to knocking combustion.
Journal Article

Pneumatic Regenerative Engine Braking Technology for Buses and Commercial Vehicles

2011-09-13
2011-01-2176
In this paper, a novel cost-effective air hybrid powertrain concept for buses and commercial vehicles, Brunel Regenerative Engine Braking Device (RegenEBD) technology, is presented and its performance during the braking process is analysed using the Ricardo WAVE engine simulation programme. RegenEBD is designed to convert kinetic energy into pneumatic energy in the compressed air saved in an air tank. Its operation is achieved by using a production engine braking device and a proprietary intake system design. During the braking operation, the engine switches from the firing mode to the compressor mode by keeping the intake valves from fully closed throughout the four-strokes by installing the Variable Valve Exhaust Brake (VVEB) device on the intake valves. As a result, the induced air could be compressed through the opening gap of intake valves into the air tank through the modified intake system.
Journal Article

Piston Design for Optimizing Trade-off of Friction and NVH

2016-06-15
2016-01-1855
Requirements for reducing powertrain NVH drives the selection of low piston skirt to liner clearances contradicting the requirement to maintain larger skirt clearances for minimizing engine friction. Whilst this clearance trade-off between low friction and low NVH is fundamental, piston design features have a significant effect on where the trade-off curve sits on the friction/NVH map. Design features can therefore be viewed not by either friction or NVH improvement measures but a shift in the friction-NVH trade off curve. Specifically, some piston design features which may be targeted at reducing friction can be viewed as either a friction benefit for similar NVH or an NVH improvement for similar friction levels. The ability to realistically quantify the effect of the design changes on NVH is therefore critical to determining what design changes to recommend, the direction of the piston design being highly sensitive to the process by which the impact on NVH is assessed.
Technical Paper

Parametric Study on CAI Combustion in a GDI Engine with an Air-Assisted Injector

2007-04-16
2007-01-0196
Controlled auto-ignition (CAI) combustion and engine performance and emission characteristics have been intensively investigated in a single-cylinder gasoline direct injection (GDI) engine with an air-assisted injector. The CAI combustion was obtained by residual gas trapping. This was achieved by using low-lift short-duration cams and early closing the exhaust valves. Effects of EVC (exhaust valve closure) and IVO (intake valve opening) timings, spark timing, injection timing, coolant temperature, compression ratio, valve lift and duration, on CAI combustion and emissions were investigated experimentally. The results show that the EVC timing, injection timing, compression ratio, valve lift and duration had significant influences on CAI combustion and emissions. Early EVC and injection timing, higher compression ratio and higher valve lift could enhance CAI combustion. IVO timing had minor effect on CAI combustion.
X