Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Statistical Simulations to Evaluate the Methods of the Construction of Injury Risk Curves

2011-11-07
2011-22-0015
Several statistical methods are currently used to build injury risk curves in the biomechanical field. These methods include the certainty method (Mertz et al. 1996), Mertz/Weber method (Mertz and Weber 1982), logistic regression (Kuppa et al. 2003, Hosmer and Lemeshow 2000), survival analysis with Weibull distribution (Kent et al. 2004, Hosmer and Lemeshow 2000), and the consistent threshold estimate (CTE) (Nusholtz et al. 1999, Di Domenico and Nusholtz 2005). There is currently no consensus on the most accurate method to be used and no guidelines to help the user to choose the more appropriate one. Injury risk curves built for the WorldSID 50th side impact dummy with these different methods could vary significantly, depending on the sample considered (Petitjean et al. 2009). As a consequence, further investigations were needed to determine the fields of application of the different methods and to recommend the best statistical method depending on the biomechanical sample considered.
Technical Paper

Proposed Method for Development of Small Female and Midsize Male Thorax Dynamic Response Corridors in Side and Forward Oblique Impact Tests

2015-11-09
2015-22-0007
Despite the increasing knowledge of the thorax mechanics, the effects of inter-individual differences on the mechanical response are difficult to take into account. Several methods are available in the literature to refine the biofidelity corridors or to extrapolate them to other populations (eg: children, small females, large males). Because of the lack of concrete cases, the relevance of the assumptions is rarely investigated. In 2014, Baudrit et al. published data on thorax dynamic responses of small female and midsize male Post Mortem Human Subjects in side and forward oblique impact tests. The impactor mass was 23.4 kg for all the tests and the nominal impact speed was 4.3 m/s. The diameter of the rigid disk was 130 and 152 mm respectively for the small female specimens and for the midsize male specimens. The authors found that the maximum impact force was a function of the total body mass for each loading.
X