Refine Your Search

Topic

Search Results

Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Shuttle Induced Neutron Environment: Computational Requirements and Validation

2002-07-15
2002-01-2460
Most of the neutrons seen in the habitable environment of spacecraft in LEO are produced in local materials of the spacecraft structures by the impact of the LEO radiation environment. There are two components of the neutron spectra: one produced near the forward direction and a diffuse isotropic component. The forward component satisfies a Volterra equation and is solved by standard marching procedures. The diffuse component is generally of lower energy and nearly isotropically scattered as they diffuse through the spacecraft structures. Leakage at near boundaries marks the diffusion process and solutions are strongly dependent on forward and backward boundaries with minor contributions from lateral diffusion along spacecraft wall structures. The diffuse neutron equation is solved using multigroup methods with impressed forward and backward boundary conditions.
Technical Paper

Revised Solid Waste Model for Mars Reference Missions

2002-07-15
2002-01-2522
A key component of an Advanced Life Support (ALS) system is the solid waste handling system. One of the most important data sets for determining what solid waste handling technologies are needed is a solid waste model. A preliminary solid waste model based on a six-person crew was developed prior to the 2000 Solid Waste Processing and Resource Recovery (SWPRR) workshop. After the workshop, comments from the ALS community helped refine the model. Refinements included better estimates of both inedible plant biomass and packaging materials. Estimates for Extravehicular Mobility Unit (EMU) waste, water processor brine solution, as well as the water contents for various solid wastes were included in the model refinement efforts. The wastes were re-categorized and the dry wastes were separated from wet wastes. This paper details the revised model as of the end of 2001. The packaging materials, as well as the biomass wastes, vary significantly between different proposed Mars missions.
Technical Paper

Reconfigurable Control System Design for Future Life Support Systems

2008-06-29
2008-01-1976
A reconfigurable control system is an intelligent control system that detects faults within the system and adjusts its performance automatically to avoid mission failure, save lives, and reduce system maintenance costs. The concept was first successfully demonstrated by NASA between December 1989 and March 1990 on the F-15 flight control system (SRFCS), where software was integrated into the aircraft's digital flight control system to compensate for component loss by reconfiguring the remaining control loop. This was later adopted in the Boeing X-33. Other applications include modular robotics, reconfigurable computing structure, and reconfigurable helicopters. The motivation of this work is to test such control system designs for future long term space missions, more explicitly, the automation of life support systems.
Technical Paper

Performance Evaluation of Candidate Space Suit Elements for the Next Generation Orbital EMU

1992-07-01
921344
The projections of increased Extravehicular Activity (EVA) operations for the Space Station Freedom (SSF) resulted in the development of advanced space suit technologies to increase EVA efficiency. To eliminate the overhead of denitrogenation, candidate higher-operating pressure suit technologies were developed. The AX-5 all metallic, multi-bearing technologies were developed at the Ames Research Center, and the Mk. III fabric and metallic technologies were developed at the Johnson Space Center. Following initial technology development, extensive tests and analyses were performed to evaluate all aspects of candidate technology performance. The current Space Shuttle space suit technologies were used as a baseline for evaluating those of the AX-5 and Mk. III. Tests included manned evaluations in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft.
Technical Paper

Neutral Buoyancy Portable Life Support System Performance Study

1991-07-01
911346
A system performance study on a portable life support system being developed for use in the Weightless Environment Training Facility (WETF) and the Neutral Buoyancy Laboratory (NBL) has been completed. The Neutral Buoyancy Portable Life Support System (NBPLSS) will provide life support to suited astronauts training for extravehicular activity (EVA) under water without the use of umbilicals. The basic configuration is characterized by the use of medium pressure (200 - 300 psi) cryogen (liquid nitrogen/oxygen mixture) which provides cooling within the Extravehicular Mobility Unit (EMU), the momentum which enables flow in the vent loop, and oxygen for breathing. NBPLSS performance was analyzed by using a modified Metabolic Man program to compare competing configurations. Maximum sustainable steady state metabolic rates and transient performance based on a typical WETF metabolic rate profile were determined and compared.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Improvement of Risk Assessment from Space Radiation Exposure for Future Space Exploration Missions

2007-07-09
2007-01-3116
Protecting astronauts from space radiation exposure is an important challenge for mission design and operations for future exploration-class and long-duration missions. Crew members are exposed to sporadic solar particle events (SPEs) as well as to the continuous galactic cosmic radiation (GCR). If sufficient protection is not provided the radiation risk to crew members from SPEs could be significant. To improve exposure risk estimates and radiation protection from SPEs, detailed evaluations of radiation shielding properties are required. A model using a modern CAD tool ProE™, which is the leading engineering design platform at NASA, has been developed for this purpose. For the calculation of radiation exposure at a specific site, the cosine distribution was implemented to replicate the omnidirectional characteristic of the 4π particle flux on a surface.
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
Technical Paper

Food System Trade Study for an Early Mars Mission

2001-07-09
2001-01-2364
In preparation for future planetary exploration, the Bioregenerative Planetary Life Support Systems Test Complex (BIO-Plex) is currently being built at the NASA Johnson Space Center. The BIO-Plex facility will allow for closed chamber Earth-based tests. Various prepackaged food systems are being considered for the first 120-day BIO-Plex test. These food systems will be based on the Shuttle Training Menu and the International Space Station (ISS) Assembly Complete food systems. This paper evaluates several prepackaged food system options for the surface portion of an early Mars mission, based on plans for the first BIO-Plex test. The five systems considered are listed in Table 1. The food system options are assessed using equivalent system mass (ESM), which evaluates each option based upon the mass, volume, power, cooling and crewtime requirements.
Technical Paper

Environmental Control System for an Experimental Crew Return Vehicle

1997-07-01
972263
A small team of NASA engineers has been assembled at the Johnson Space Center, with the goal of developing an inexpensive space-capable vehicle. In order to minimize cost and development time of the experimental vehicle, it was desirable to build upon a previously-developed vehicle shape. The basic shape of the X-24A experimental lifting body was chosen for several reasons, and in the case of the Environmental Control and Life Support (ECLS), the de-orbit cross-range capability of this shape provides for a minimal on-orbit time while waiting for landing opportunities, which in turn simplifies the ECLS. Figure 1 shows the X-38 vehicle body shape. In keeping with the goal of rapidly developing an inexpensive and reliable vehicle, the ECLS was developed using simple, passive systems where practical. This paper provides an overview of the ECLS mission requirements and design, with emphasis on the philosophy used in its development.
Technical Paper

Education Payload Operations Kit C: A Miniature, Low ESM Hobby Garden for Space-Based Educational Activities

2007-07-09
2007-01-3067
The wonder of space exploration is a sure way to catch the attention of students of all ages, and space biology is one of many sciences critical to understanding the spaceflight environment. Many systems used in the past for space-to-classroom biology activities have required extensive crew time and material resources, making space-linked education logistically and financially difficult. The new Education Payload Operations Kit C (EPO Kit C) aims to overcome obstacles to space-linked education and outreach by dramatically reducing the resources required for educational activities in plant space biology that have a true spaceflight component. EPO Kit C is expected to be flown from STS-118 to the International Space Station in June 2007. NASA and several other organizations are currently planning an outreach program to complement the flight of EPO Kit C.
Technical Paper

EVA Operational Enhancements and ASEM

1992-07-01
921341
Among the many firsts which will occur on STS-49, the maiden voyage of the Space Shuttle Endeavour, a Space Station Freedom (SSF) experiment entitled Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) promises to test the boundaries of EVA operational capabilities. Should the results be favorable, station and other major users of EVA stand to benefit from increased capabilities. Even the preparation for the ASEM experiment is serving as a pathfinder for complex SSF operations. This paper reviews the major tasks planned for ASEM and discusses the operational analogies investigators are attempting to draw between ASEM and SSF. How these findings may be applied to simplify station assembly and maintenance will also be discussed.
Technical Paper

Digital Learning Network Education Events of 2006 NASA's Extreme Environments Mission Operations

2007-07-09
2007-01-3064
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. The DLN has created a series of live education videoconferences connecting NASA's Extreme Environment Missions Operations (NEEMO) team to students across the United States. Programs are also extended to students around the world via live webcasting. The primary focus of the events is the vision for space exploration. During the programs, NEEMO crewmembers, including NASA astronauts, engineers and scientists, inform and inspire students about the importance of exploration and share the importance of the project as it correlates with plans to return to the moon and explore the planet Mars. These events highlight interactivity. Students talk live with the aquanauts in Aquarius, the National Oceanic and Atmospheric Administration's underwater laboratory located 4.5 kilometers off Key Largo in the Florida Keys National Marine Sanctuary.
Technical Paper

Digital Learning Network Education Events for the Desert Research and Technology Studies

2007-07-09
2007-01-3063
NASA's Digital Learning Network (DLN) reaches out to thousands of students each year through video conferencing and webcasting. As part of NASA's Strategic Plan to reach the next generation of space explorers, the DLN develops and delivers educational programs that reinforce principles in the areas of science, technology, engineering and mathematics. The DLN has created a series of live education videoconferences connecting the Desert Research and Technology Studies (RATS) field test to students across the United States. The programs are also extended to students around the world via live webcasting. The primary focus of the events is the Vision for Space Exploration. During the programs, Desert RATS engineers and scientists inform and inspire students about the importance of exploration and share the importance of the field test as it correlates with plans to return to the Moon and explore Mars. This paper describes the events that took place in September 2006.
Technical Paper

Development of a Test Facility for Air Revitalization Technology Evaluation

2007-07-09
2007-01-3161
Development of new air revitalization system (ARS) technology can initially be performed in a subscale laboratory environment, but in order to advance the maturity level, the technology must be tested in an end-to-end integrated environment. The Air Revitalization Technology Evaluation Facility (ARTEF) at the NASA Johnson Space Center (JSC) serves as a ground test bed for evaluating emerging ARS technologies in an environment representative of spacecraft atmospheres. At the center of the ARTEF is a hypobaric chamber which serves as a sealed atmospheric chamber for closed loop testing. A Human Metabolic Simulator (HMS) was custom-built to simulate the consumption of oxygen, and production of carbon dioxide, moisture and heat by up to eight persons. A variety of gas analyzers and dew point sensors are used to monitor the chamber atmosphere and the process flow upstream and downstream of a test article. A robust vacuum system is needed to simulate the vacuum of space.
Technical Paper

Comparison Studies of Candidate Nutrient Delivery Systems for Plant Cultivation in Space

1997-07-01
972304
A reliable nutrient delivery system is essential for long-term cultivation of plants in space. At the Kennedy Space Center, a series of ground-based tests are being conducted to compare candidate plant nutrient delivery systems for space. To date, our major focus has concentrated on the Porous Tube Plant Nutrient Delivery System, the ASTROCULTURE™ System, and a zeoponic plant growth substrate. The merits of each system are based upon the performance of wheat supported over complete growth cycles. To varying degrees, each system supported wheat biomass production and showed distinct patterns for plant nutrient uptake and water use.
Technical Paper

An Environmental Sensor Technology Selection Process for Exploration

2005-07-11
2005-01-2872
In planning for Exploration missions and developing the required suite of environmental monitors, the difficulty lies in down-selecting a multitude of technology options to a few candidates with exceptional potential. Technology selection criteria include conventional analytical parameters (e.g., range, sensitivity, selectivity), operational factors (degree of automation, portability, required level of crew training, maintenance), logistical factors (size, mass, power, consumables, waste generation) and engineering factors such as complexity and reliability. Other more subtle considerations include crew interfaces, data readout and degree of autonomy from the ground control center. We anticipate that technology demonstrations designed toward these goals will be carried out on the International Space Station, the end result of which is a suite of techniques well positioned for deployment during Exploration missions.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Advanced Integration Matrix Education Outreach

2004-07-19
2004-01-2481
The Advanced Integration Matrix (AIM) will design a ground-based test facility for developing revolutionary integrated systems for joint human-robotic missions in order to study and solve systems-level integration issues for exploration missions beyond Low Earth Orbit (LEO). This paper describes development plans for educational outreach activities related to technological and operational integration scenarios similar to the challenges that will be encountered through this project. The education outreach activities will provide hands-on, interactive exercises to allow students of all levels to experience design and operational challenges similar to what NASA deals with everyday in performing the integration of complex missions. These experiences will relate to and impact students' everyday lives by demonstrating how their interests in science and engineering can develop into future careers, and reinforcing the concepts of teamwork and conflict resolution.
X