Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Journal Article

Minimizing EVA Airlock Time and Depress Gas Losses

2008-06-29
2008-01-2030
This paper describes the need and solution for minimizing EVA airlock time and depress gas losses using a new method that minimizes EVA out-the-door time for a suited astronaut and reclaims most of the airlock depress gas. This method consists of one or more related concepts that use an evacuated reservoir tank to store and reclaim the airlock depress gas. The evacuated tank can be an inflatable tank, a spent fuel tank from a lunar lander descent stage, or a backup airlock. During EVA airlock operations, the airlock and reservoir would be equalized at some low pressure, and through proper selection of reservoir size, most of the depress gas would be stored in the reservoir for later reclamation. The benefit of this method is directly applicable to long duration lunar and Mars missions that require multiple EVA missions (up to 100, two-person lunar EVAs) and conservation of consumables, including depress pump power and depress gas.
Technical Paper

Advanced Airlock Concept Studies for Exploration Surface Systems

2006-07-17
2006-01-2234
This paper presents results of advanced airlock concept studies conducted at the NASA Johnson Space Center in support of exploration surface systems, such as lunar lander airlocks and other advanced vehicle airlocks. The studies include preliminary requirements for advanced airlocks, and rationale for using the rear-entry space suit as the basic advanced suit design to be accommodated by the airlocks. The studies also present rationale for minimum volume airlocks and gas reclamation methods needed for long duration missions. Another study shows conceptual designs for single person airlocks, dual person airlocks, and multi-person airlocks, along with associated benefits and disadvantages of each. A test and selection methodology is also discussed for future airlock development.
X