Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Wingtip Vortex Turbine Investigation for Vortex Energy Recovery

1990-09-01
901936
A flight test investigation has been conducted to determine the performance of wingtip vortex turbines and their effect on aircraft performance. The turbines were designed to recover part of the large energy loss (induced drag) caused by the wingtip vortex. The turbine, driven by the vortex flow, reduces the strength of the vortex, resulting in an associated induced drag reduction. A four-blade turbine was mounted on each wingtip of a single-engine, T-tail, general aviation airplane. Two sets of turbine blades were tested, one with a 15° twist (washin) and one with no twist. The power recovered by the turbine and the installed drag increment were measured. A trade-off between turbine power and induced drag reduction was found to be a function of turbine blade incidence angle. This test has demonstrated that the wingtip vortex turbine is an attractive alternate, as well as an emergency, power source.
Technical Paper

Wing Modification for Increased Spin Resistance

1983-02-01
830720
A simple wing leading-edge modification has been developed that delays outer wing panel stall, thus maintaining roll damping to higher angles of attack and delaying the onset of autorotation. The stall angle of attack of the outer wing panel has been shown to be a function of the spanwise length of the leading-edge modification. The margin of spin resistance provided by the modification is being explored through flight tests. Preliminary results have been used to evaluate spin resistance in terms of the difference in angle of attack between outer wing panel stall and the maxiumum attainable angle of attack.
Technical Paper

Wind-Tunnel Investigation of a General Aviation Airplane Equipped With a High Aspect-Ratio, Natural-Laminar-Flow Wing

1987-08-01
871019
An investigation has been conducted in the Langley 30- by 60-Foot Wind Tunnel to evaluate the performance and stability and control characteristics of a full-scale general aviation airplane equipped with a natural-laminar-flow wing. The study focused on the effects of natural laminar flow and boundary layer transition, and on the effects of several wing leading-edge modifications designed to improve the stall resistance of the configuration. Force and moment data were measured over wide angle-of-attack and sideslip ranges and at Reynolds numbers from 1.4 × 106 to 2.1 × 106 based on the mean aerodynamic chord. Additional measurements were made using hot-film and sublimating-chemical techniques to determine the condition of the wing boundary layer, and wool tufts were used to study the wing stalling characteristics. The investigation showed that large regions of natural laminar flow existed on the wing which would significantly enhance the cruise performance of the configuration.
Technical Paper

Wind-Tunnel Investigation of Commercial Transport Aircraft Aerodynamics at Extreme Flight Conditions

2002-11-05
2002-01-2912
A series of low-speed static and dynamic wind tunnel tests of a commercial transport configuration over an extended angle of attack/sideslip envelope was conducted at NASA Langley Research Center. The test results are intended for use in the development of an aerodynamic simulation database for determining aircraft flight characteristics at extreme and loss-of-control conditions. This database will be used for the development of loss-of-control prevention or mitigation systems, pilot training for recovery from such conditions, and accident investigations. An overview of the wind-tunnel tests is presented and the results of the tests are evaluated with respect to traditional simulation database development techniques for modeling extreme conditions to identify regions where simulation fidelity should be addressed.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Waste and Hygiene Compartment for the International Space Station

2001-07-09
2001-01-2225
The Waste and Hygiene Compartment will serve as the primary facility for metabolic waste management and personal hygiene on the United States segment of the International Space Station. The Compartment encloses the volume of two standard ISS racks and will be installed into Node 3 after launch inside a Multipurpose Logistics Module on the Space Shuttle. Long duration space flight requires a departure from the established hygiene and waste disposal practices employed on the Space Shuttle. This paper describes requirements and a conceptual design for the Waste and Hygiene Compartment that are both logistically practical and acceptable to the crew.
Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

2008-06-29
2008-01-2115
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Ventilated Brake Rotor Air Flow Investigation

1997-02-24
971033
Air flow through the passages of a Chrysler LH platform ventilated brake rotor is measured. Modifications to the production rotor's vent inlet geometry are prototyped and measured in addition to the production rotor. Vent passage air flow is compared to existing correlations. The inlet modifications show significantly improved vent air flow, over the production rotor. The result improvement in heat transfer and rotor cooling is reported. These benefits in performance should be attainable at very low increases in production cost.
Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Utilizing Exploration Life Support Technology on ISS - a Bold New Approach

1998-07-13
981808
A new life support approach is proposed for use on the International Space Station (ISS). This involves advanced technologies for water recovery and air revitalization, tested at the Johnson Space Center (JSC), including bioprocessing, reverse-osmosis and distillation, low power carbon dioxide removal, non-expendable trace contaminant control, and carbon dioxide reduction.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Using a Sweating Manikin, Controlled by a Human Physiological Model, to Evaluate Liquid Cooling Garments

2005-07-11
2005-01-2971
An Advanced Automotive Manikin (ADAM), is used to evaluate liquid cooling garments (LCG) for advanced space suits for extravehicular applications and launch and entry suits. The manikin is controlled by a finite-element physiological model of the human thermoregulatory system. ADAM's thermal response to a baseline LCG was measured.The local effectiveness of the LCG was determined. These new thermal comfort tools permit detailed, repeatable measurements and evaluation of LCGs. Results can extend to other personal protective clothing including HAZMAT suits, nuclear/biological/ chemical protective suits, fire protection suits, etc.
Technical Paper

Using R744 (CO2) to Cool an Up-Armored M1114 HMMWV

2005-05-10
2005-01-2024
The US Army uses a light tactical High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV) which, due to the amount of armor added, requires air conditioning to keep its occupants comfortable. The current system uses R134a in a dual evaporator, remote-mounted condenser, engine-driven compressor system. This vehicle has been adapted to use an environmentally friendly refrigerant (carbon dioxide) to provide performance, efficiency, comfort and logistical benefits to the Army. The unusual thermal heat management issues and the fact that the vehicle is required to operate under extreme ambient conditions have made the project extremely challenging. This paper is a continuation of work presented at the SAE Alternate Refrigerants Symposium held in Phoenix last June [1].
Technical Paper

Ultrasonic Measurement of Aircraft Strut Hydraulic Fluid Level

2002-11-05
2002-01-2935
An ultrasonic method is presented for non-intrusively measuring hydraulic fluid level in aircraft struts in the field quickly and easily without modifying the strut or aircraft. The technique interrogates the strut with ultrasonic waves generated and received by a removable ultrasonic transducer hand-held on the outside of the strut in a fashion that inthe presence or absence of hydraulic fluid inside the strut. This technique was successfully demonstrated on an A-6 aircraft strut on the carriage at the Aircraft Landing Dynamics Research Facility at NASA Langley Research Center. Conventional practice upon detection of strut problem symptoms is to remove aircraft from service for extensive maintenance to determine fluid level. No practical technique like the method presented herein for locating strut hydraulic fluid level is currently known to be used.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

1996-07-01
961455
Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

Two-Photon Laser-Induced Fluorescence of Nitric Oxide in a Diesel Engine

2006-04-03
2006-01-1201
In-cylinder concentrations of nitric oxide (NO) in a diesel engine were studied using a laser-induced fluorescence (LIF) technique that employs two-photon excitation. Two-photon NO LIF images were acquired during the expansion and exhaust portions of the engine cycle providing useful NO fluorescence signal levels from 60° after top dead center through the end of the exhaust stroke. The engine was fueled with the oxygenated compound diethylene glycol diethyl ether to minimize soot within the combustion chamber. Results of the two-photon NO LIF technique from the exhaust portion of the cycle were compared with chemiluminescence NO exhaust-gas measurements over a range of engine loads from 1.4 to 16 bar gross indicated mean effective pressure. The overall trend of the two-photon NO LIF signal showed good qualitative agreement with the NO exhaust-gas measurements.
Technical Paper

Transient and Steady State Performance Characteristics of a Two-Wheel-Steer and Four-Wheel-Steer Vehicle Model

1991-09-01
911926
Using a three-degree-of-freedom vehicle model (side-slip, yaw and roll degrees of freedom) and a nonlinear, saturating rire model, the behavior of a typical exemplar vehicle (1986 Dodge Lancer Turbo) was simulated. Steady state performance was examined through simulating a skidpad lateral accelerarion maneuver. A lane change maneuver was used to reprcsenr transient performance characteristics. A few simple experiments were conducted wirh rhe exemplar vehicle to establish parameters and verify some performance properties. Results of both steady srare and rransienr simulations showed that four -wheel steer offers lirrle or no demonstrated performance advanrages over two-wheel steer.
X