Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Properties of the Intelligent Catalyst

2004-03-08
2004-01-1272
We have developed a revolutionary automotive catalyst that maintains high activity by the suppression of grain growth of precious metals. This catalyst contains Pd-perovskite crystal which has shown a capacity for self-regeneration of Pd in a cycle of solid solution and segregation in perovskite crystals [1, 2, 3, 4, 5 and 6]. We named this catalyst the “Intelligent Catalyst” and first commercialized it in the Japanese market in October 2002 [7, 8]. In this study, we investigated the activity of Pd at various temperatures to confirm that the self-regenerative mechanism worked well at low temperatures like those right after engine starting. We also examined the durability of perovskite structure at high temperatures and tested its catalytic activity after engine aging at high temperatures above 1000 °C up to 1100 °C. It is proved that the intelligent catalyst has both excellent activity and durability under practical conditions.
Technical Paper

The Development of Toyota Fantasy Print System

1998-09-29
982344
Recently, the demands of vehicle owners have become more diversified. This is particularly true in the paint appearance of the vehicle. Responding to these demands Toyota has developed an ink jet painting system, Toyota Fantasy Print System. This system can illustrate practically any picture which the customer desires. The system utilized a subtractive method of paint mixture which mixes or piles up these four permeable inks. The development of durable ink as well as equipment which can efficiently and effectively apply the ink onto the required contoured surface.
Technical Paper

Study of Future Engine Oil (First Report): Future Engine Oil Scenario

2007-07-23
2007-01-1977
In recent years, problems such as global warming, the depletion of natural resources, and air pollution caused by emissions are emerging on a global scale. These problems call for efforts directed toward the development of fuel-efficient engines and exhaust gas reduction measures. As a solution to these issues, performance improvements should be achieved on the oil that lubricates the sliding sections of engines. This report points to features required of future engine oil-such as contribution to fuel consumption, minimized adverse effects on the exhaust gas aftertreatment system, and improved reliability achieved by sludge reduction-and discusses the significance of these features. For engine oil to contribution of engine oil to lower fuel consumption, we examined the effects of reduced oil viscosity on friction using gasoline and diesel engines.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Silicon Nitride Turbocharger Rotor for High Performance Automotive Engines

1990-02-01
900656
Toyota Motor Corporation has mass-produced turbochargers with silicon nitride ceramic rotors since October, 1989. Those turbochargers have been introduced into Celica and MR-2 which are Toyota sporty-type passenger cars. The designing of ceramic rotor was carried out in order to ensure the strength and durability of the component as well as to obtain the same aerodynamic characteristics as in the metal rotor. A moment of inertia was reduced by 60% using ceramic rotor which improved turbocharger response. The ceramic rotor was joined to metal shaft by new method which compensated problems in both shrink fitting and active brazing methods. High temperature strength of silicon nitride material was improved by controlling the amount of sintering additives and sintering conditions. The ceramic injection moulding was employed to mass-produce rotors with complicated shape, applying optimun binder compositions and moulding conditions.
Technical Paper

Reliability Problem Prevention Method for Automotive Components - Development of GD3 Activity and DRBFM (Design Review Based on Failure Mode)-

2003-10-27
2003-01-2877
Recently, the concept of Mizen Boushi (reliability problem prevention) has been applied in automotive development as a tool to refine drawings to the greatest completion possible by the prototype stage. GD3 is a quality innovation process that supports this objective, based on the pillars of Good Design, Good Discussion, and Good Design Review. Good Design tries to nip problems in the bud, and Good Discussion and Good Design Review are used to formulate the best countermeasures to those problems. The process utilizes creative FMEA (Failure Mode & Effects Analysis), FTA (Fault Tree Analysis), and a System Design Review. These tools focus attention on the many potential problems that could occur due to a change in design or environment. The System Design Review is especially useful to examine potential failure modes, root causes, part drawings, and prototype part designs. This is followed by a Design Review Based on Failure Mode (DRBFM for short), as a tool to guide discussion.
Journal Article

Prediction of Low Frequency Vibration Caused by Power Train Using Multi-Body Dynamics

2009-05-19
2009-01-2193
1 To predict accurately low frequency vibration caused by the power train, it is essential to consider both the non-steady state characteristics of the engine exciting force and the frequency and amplitude dependent non-linear characteristics of the various components of the transfer system. Conventional steady-state linear analysis using finite element methods (FEM) is unable to handle these characteristics, and as a result, its prediction accuracy is insufficient. This research is based on a multi-body dynamics (MBD) model that is capable of handling non-steady state and non-linear analysis, into which in-cylinder pressure prediction methods were incorporated. The technology developed took into consideration the non-linear characteristics of the transfer system and thereby enabled highly accurate predictions of all systems associated with the vibration reaching the vehicle body.
Technical Paper

Pre-Collision System for Toyota Safety Sense

2016-04-05
2016-01-1458
Toyota Safety Sense is a safety system package developed to help drivers avoid accident types with a high frequency of occurrence. This paper deals with pre-collision system which forms the core of Toyota Safety Sense, especially Toyota Safety Sense P which uses a combined sensor configuration consisting of a monocular camera paired with millimeter wave radar, in order to achieve both high recognition performance and reliability. The use of a wide-angle monocular camera, millimeter wave radar integrated in the front grill emblem, and a collision determination algorithm for pedestrian targets enabled the development of a pre-collision system comprising detection capability of crossing pedestrians. Toyota has developed warning and pre-collision brake assist for driver to assist in avoiding a collision effectively; In addition, Pre-collision brake has achieved high level of performance for the drivers who cannot avoid a collision.
Technical Paper

Parametric Study and Clarification of Determination Factors of Diesel Exhaust Emission Using a Single Cylinder Engine and Model Fuels - JCAP Combustion Analysis Working Group Report Part I

2002-10-21
2002-01-2824
Single cylinder engine testing was carried out to clearly understand the test results of multi-cylinder engines reported by the Diesel WG in JCAP (Japan Clean Air Program) (1), (2), (3) and (4). In this tests, engine specifications such as fuel injection pressure, nozzle hole diameter, turbo-charging pressure, EGR rate, and fuel properties such as 1-, 2-, 3-ring aromatics content, n-,i-paraffins content, and T90 were parametrically changed and their influence on the emissions were studied. PM emission generally increased in each engine condition with increased aromatic contents and T90. In particular, multi ring aromatics brought about large increases in PM regardless of the engine conditions. The influence of fuel properties on NOx emission is smaller than the influence on PM emission. Some other fuels that have various side chain structures of 1-ring aromatics, normal paraffins only and various naphthene contents were also investigated.
Technical Paper

Numerical Analysis of Flow in the Induction System of an Internal Combustion Engine -Multi-Dimensional Calculation Using a New Method of Lines

1990-02-01
900255
Multi-dimensional code has been developed to simulate the effect of geometry on mass flow rate and flow pattern in the induction system of an internal combustion engine. The unsteady compressible Navier-Stokes equations in general curvilinear coordinates are solved by a new method of lines. In the method of lines, the governing equations are spatially discretized by a finite difference approximation and the resulting system of ordinary differential equations is integrated. As a time integration scheme, we newly propose to use the rational Runge-Kutta scheme in order to efficiently simulate the flows in the induction system. The domain-decomposition technique is introduced so that body-fitted structured grid can be easily generated for such complex geometry as a real intake port shape. The present code is applied to 2 and 3 dimensional steady flows in intake port/cylinder assembly with a valve.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Technical Paper

Measurement Technique of Exhaust Valve Temperature

2015-09-01
2015-01-1999
Thermal load caused by engine combustion is one of the important issues for the engines such as high-boosted downsized engines and engines with high compression ratio. In particular, it is necessary to maintain the reliability and durability of exhaust valves which are subject to the biggest thermal impact. For this reason, sodium filled hollow valves are utilized in preference to solid valves in order to decrease the exhaust valve temperature. The most common method for detecting the valve temperature is to estimate the temperature by measuring hardness on valve surface (Hardness test). However, the hardness test is only applicable to the condition up to 800°C. Therefore, this paper presents new techniques for measuring the temperature for sodium-filled valve using infrared thermography and thermocouple as an alternative hardness test. The authors also examined the valve temperatures at a variety of engine speeds and cooling of the sodium-filled valve during engine operation.
Journal Article

Low-viscosity Gear Oil Technology to Improve Wear at Tapered Roller Bearings in Differential Gear Unit

2016-10-17
2016-01-2204
Torque loss reduction at differential gear unit is important to improve the fuel economy of automobiles. One effective way is to decrease the viscosity of lubricants as it results in less churning loss. However, this option creates a higher potential for thin oil films, which could damage the mechanical parts. At tapered roller bearings, in particular, wear at the large end face of rollers and its counterpart, known as bearing bottom wear is one of major failure modes. To understand the wear mechanism, wear at the rolling contact surface of rollers and its counterpart, known as bearing side wear, was also observed to confirm the wear impact on the tapered roller bearings. Because gear oils are also required to avoid seizure under extreme pressure, the combination of a phosphorus anti-wear agent and a sulfurous extreme pressure agent are formulated.
Technical Paper

Lightweight Design Enabled by Innovative CAE Based Development Method Using Topology Optimization

2024-04-09
2024-01-2454
Carbon neutrality has become a significant target. One essential parameter regarding energy consumption and emissions is the mass of vehicles. Lightweight design improves the result of vehicle life cycle assessment (LCA), increases efficiency, and can be a step towards sustainability and CO2 neutrality. Weight reduction through structural optimization is a challenging task. Typical design development procedures have to be overcome. Instead of just a facelift or the creation of a derivative of the predecessor design, completely alternative design creation methods have to be applied. Automated structural optimization is one tool for exploring completely new design approaches. Different methods are available and weight reduction is the focus of topology optimization. This paper describes a fatigue life homogenization method that enables the weight reduction of vehicle parts. The applied CAE process combines fatigue life prediction and topology optimization.
Technical Paper

High Toughness Microalloyed Steels for Vital Automotive Parts

1989-02-01
890511
We developed new microalloyed steels, containing about 0.05% sulfur, which have excellent as hot-forged toughness even when forged at the temperatures of about 1300°C(2375°F). We also estimated the various properties of the new microalloy steel in the as hot-forged condition, comparing them to quench and tempered SAE1055 steel used in the front axle of a small truck. The results showed the new steel has improved yield strength, fatigue strength, absorbed impact energy and machinability over the SAE1055 steel.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Technical Paper

Finite Element Modeling Method of Vibro-Acoustic Systems for Mid-Frequency Simulation

2016-04-05
2016-01-1355
Current vehicle acoustic performance prediction methods, CAE (computer aided engineering) or physical testing, have some difficulty predicting interior sound in the mid-frequency range (300 to 1000 Hz). It is in this frequency range where the overall acoustic performance becomes sensitive to not only the contributions of structure-borne sources, which can be studied using traditional finite element analysis (FEA) methods, but also the contribution of airborne noise sources which increase proportional to frequency. It is in this higher frequency range (>1000 Hz) that physical testing and statistical CAE methods are traditionally used for performance studies. This paper will discuss a study that was undertaken to test the capability of a finite element modeling method that can accurately simulate air-borne noise phenomena in the mid-frequency range.
Technical Paper

Fatigue Life Prediction Method for Laser Screw Welds in Automotive Structures

2016-04-05
2016-01-0394
This paper describes the development of a fatigue life prediction method for Laser Screw Welding (LSW). Fatigue life prediction is used to assess the durability of automotive structures in the early design stages in order to shorten the vehicle development time. The LSW technology is a spot-type joining method similar to resistance spot welding (RSW), and has been developed and applied to body-inwhite structures in recent years. LSW can join metal panels even when a clearance exists between the panels. However, as a result of this favorable clearance-allowance feature of LSW, a concave shape may occur at the nugget part of the joint. These LSW geometric features, the concavity of nuggets and the clearance between panels, are thought to affect the local stiffness behavior of the joint. Therefore, while assessing the fatigue life of LSW, it is essential to estimate the influence of these factors adequately for the representation of the local stiffness behavior of the joint.
Journal Article

FEM System Development for Dynamic Response Analysis of Acoustic Trim

2009-05-19
2009-01-2213
The multilayer vehicle trim is well known for its effective influence upon noise and vibration characteristics not only in the high-frequency range but also in the low and mid-frequency ranges. FEM technologies which represent the accurate stiffness, mass and damping of trim parts such as the dash silencer and the floor carpet are essential in order to extend current body FEM capability to the road noise and the engine noise issues generated in the mid-frequency range. Conventional modeling methodologies such as local impedance and/or spring-mass modeling that express absorption and insulation properties of acoustic trim contain limitations in the mid-frequency range. There are few reliable FEM technologies to create practical vehicle models that represent the precise characteristics of the trim. In this paper, poroelastic modeling of acoustic multilayer trim was established by employing Biot theory.
Technical Paper

Experience and Perspective of Hybrids

2002-10-21
2002-21-0068
The Prius, Toyota Motor Corporation’s mass-produced hybrid vehicle (HV), was launched in Japan, other Asian countries, North America and Europe, and has now been accepted into the global market. Following the Prius, the Estima Hybrid and the Crown Mild Hybrid, although being based on different systems were released into the Japanese market in 2001. Over 100,000 Toyota HVs are currently on the road, and this proves that HVs are considered practical and reliable vehicles, not special vehicles. HVs have advantages in fuel economy and exhaust gas emissions compared with conventional ICE vehicles. HVs with differing kinds of hybrid systems will be introduced into the market in the future, and will gain in popularity coexisting with ICE vehicles.
X