Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Verification Test Results of Wireless Charging System

2016-04-05
2016-01-1155
Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

Variation in Corrosion Resistance of Trivalent Chromate Coating Depending on Type of Zinc Plating Bath

2006-04-03
2006-01-1671
Trivalent chromate coating is replacing the conventional hexavalent chromate coating applied on zinc plating. Zinc plating uses one of three types of plating baths (zincate, cyanide and chloride) according to the characteristics required of subject parts. It has been recognized that trivalent chromate coating provides different corrosion resistance depending on the type of zinc plating bath used. Zinc plating with chromate coating were analyzed to clarify the cause of the corrosion resistance variation with the type of zinc plating bath. It has been revealed that the chromate coating thickness and the condition of top SiO2 layer vary with the type of zinc plating bath, resulting in corrosion resistance variation.
Technical Paper

Valve Train Dynamic Analysis and Validation

2004-01-08
2004-01-1457
In order to reduce engine development timing and cost, a numerical calculation has been developed by Toyota Motor Company and Toyota Technical Center to evaluate valve train systems. The goal is to predict valve_bounce speed, valve displacement, hydraulic lash adjuster motion and strain in the rocker arm. The numerical procedure combines finite element model and multi-body dynamic analysis. Normally, strain calculation is a two-step process. In the first step, engineers obtain the excitation from the dynamic analysis. In the second step, engineers use the forcing function from dynamic analysis to calculate strain and stress. The new approach in this paper, using ADAMS, calculates dynamic load and recover strain simultaneously. As the flexibility of the moving part (for example rocker arm) is taken into account in the equations of motion, ADAMS will calculate the modal strain. Based on the modal strain, the strain or stress at any given node(s) can be recovered.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
Technical Paper

Toyota Newly Developed 2VZ-FE Type Engine

1988-11-01
881775
Newly developed 2VZ-FE engine for CAMRY is a 2.5-liter water cooled and V-type 6-cylinder engine exported from TOYOTA for the first time. This engine has the TOYOTA original 4-valve DOHC system. That is, exhaust camshafts driven by intake camshafts using scissors gears. By its compact configuration with the gear driven camshafts, this V-type 6-cylinder engine is mounted on a front-wheel-drive vehicle which originally had an in-line 4-cylinder engine. By increasing IVZ-FE engine displacement (for domestic), compact pentroof-type combustion chambers, optimum air-fuel ratio and ignition timing by TCCS (TOYOTA Computer Controlled System) and other technologies, a high performance 153HP/5600rpm and a large torque 155ft·lbs/4400rpm have been achieved with a low fuel consumption.
Technical Paper

Three-Dimensional Shape Measurement With High-Energy X-Ray CT-Scan

2003-03-03
2003-01-1033
Digital engineering has been utilized in product development to improve the quality. The actual object was measured and digitized into the three-dimensional (3-D) data, and the requirement of evaluating and analyzing the CAD data has been increased in these activities. So, we developed the technology that measures the actual object and obtains the 3-D model data for general automotive parts. The features of this new system are high-speed and high-accuracy by using high energy X-ray CT technology and 3-D model data technology. 3-D model data can be obtained for about 5 hours in case of the engine block and the error is 0.1mm or less. We also show the examples of the new automotive parts development using this technology.
Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

Theoretical Study on Spray Design for Small-Bore Diesel Engine

2016-04-05
2016-01-0740
1 Recently, demand for small-bore compact vehicle engines has been increasing from the standpoint of further reducing CO2 emissions. The generalization and formulation of combustion processes, including those related to emissions formation, based on a certain similarity of physical phenomena regardless of engine size, would be extremely beneficial for the unification of development processes for various sizes of engines. The objective of this study is to clarify what constraints are necessary for engine/nozzle specifications and injection conditions to achieve the same combustion characteristics (such as heat release rate and emissions) in diesel engines with different bore sizes.
Technical Paper

The Impact of RON on SI Engine Thermal Efficiency

2007-07-23
2007-01-2007
Recently, global warming and energy security have received significant attention. Thus an improvement of the vehicle fuel economy is strongly required. For engines, one effective way is to improve the engine thermal efficiency. Raising compression ratio [1] or turbo charging technologies have potential to achieve high thermal efficiency. However knock does not allow the high thermal efficiency. Knock depends on the fuel composition and the pressure and temperature history of unburnt end-gas [2-3]. For fuels, RON is well known for describing the anti knock quality. High RON fuels have high anti knock quality and result in higher thermal efficiency. This paper investigates the impact of high RON fuels on the thermal efficiency by using high compression ratio engine, turbo charged engine, and lean boosted engine [4]. Finally, it is shown that the high thermal efficiency can be approached with high RON gasoline and ethanol.
Journal Article

The Impact of Diesel and Biodiesel Fuel Composition on a Euro V HSDI Engine with Advanced DPNR Emissions Control

2009-06-15
2009-01-1903
In an effort to reduce CO2 emissions, governments are increasingly mandating the use of various levels of biofuels. While this is strongly supported in principle within the energy and transportation industries, the impact of these mandates on the transport stock’s CO2 emissions and overall operating efficiency has yet to be fully explored. This paper provides information on studies to assess biodiesel influences and effects on engine performance, driveability, emissions and fuel consumption on state-of-the-art Euro IV compliant Toyota Avensis D4-D vehicles with DPNR aftertreatment systems. Two fuel matrices (Phases 1 & 2) were designed to look at the impact of fuel composition on vehicle operation using a wide range of critical parameters such as cetane number, density, distillation and biofuel (FAME) level and type, which can be found within the current global range of Diesel fuel qualities.
Technical Paper

The Effect of Ethanol Fuel on a Spark Ignition Engine

2006-10-16
2006-01-3380
Since ethanol is a renewable source of energy and it contributes to lower CO2 emissions, ethanol produced from biomass is expected to increase in use as an alternative fuel. It is recognized that for spark ignition (SI) engines ethanol has advantages of high octane number and high combustion speed and has a disadvantage of difficult startability at low temperature. This paper investigates the influence of ethanol fuel on SI engine performance, thermal efficiency, and emissions. The combustion characteristics under cold engine conditions are also examined. Ethanol has high anti-knock quality due to its high octane number, and high latent heat of evaporation, which decreases the compressed gas temperature during the compression stroke. In addition to the effect of latent heat of evaporation, the difference of combustion products compared with gasoline further decreases combustion temperature, thereby reducing cooling heat loss.
Technical Paper

The Development of Fluid for Small-Sized and Light Weight Viscous Coupling

1998-05-04
981446
For viscous couplings(VCs) as a driving force transmission system of vehicles, requirement of torque characteristics has been getting very stringent. Because the torque characteristics significantly affect four wheel drive vehicles' abilities such as traction performance and driving stability. Furthermore, the recent concerns on high fuel economy, low pollution and low cost require that design of VCs should be increasingly compact, light weighted and excellent in transmitted torque's stability. It is an easy way to increase viscosity of viscous coupling fluids(VCFs) for the compact design of the VC. But it might cause increase in heat load and wear of plates which resulted in degradation of the VCF. The degradation affects VCF's viscosity and impairs stability in torque transmission. Therefore it is indispensable to develop high viscosity VCF which is excellent in long-term viscosity's stability.
Journal Article

Study of Oxide Supports for PEFC Catalyst

2017-03-28
2017-01-1179
Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

Stereo Vision System for Advanced Vehicle Safety System

2007-04-16
2007-01-0405
In this paper, we will introduce a stereo vision system developed as a sensor for a vehicle's front monitor. This system consists of three parts; namely, a stereo camera that collects video images of the forward view of the vehicle, a stereo ECU that processes its output image, and a near-infrared floodlight for illuminating the front at night. We were able to develop an obstacle detection function for the Pre-Crash Safety System and also a traffic lane detection function for a Lane-Keeping Assist System. Especially in regard to the obstacle detection function, we were able to achieve real-time processing of the disparity image calculations that had formerly required long processing times by using two types of recently developed LSIs.
Journal Article

Ride Comfort Analysis Considering Suspension Friction with Series Rigidity

2016-04-05
2016-01-1679
A dynamics model considering series rigidity was constructed to examine suspension friction, which has a major effect on ride comfort on paved roads. The friction characteristics of the bushings, ball joints, and shock absorbers are expressed with series elastic elements such as arm rigidity and the spring constant of the oil seals. It was confirmed that the calculated values for the overall spring constant and damping coefficient of the suspension virtually matched values measured in a 4-post shaker test. In addition, the results of analysis using this dynamics model confirmed that the degree of friction affects both the damping coefficient and the spring constant of the suspension, especially when the series rigidity is high. Also highly rigid friction has an adverse effect on sprung motion in frequency ranges above 15 Hz. After suspension enhancements were adopted based on these findings, 4-post shaker tests confirmed that sprung motion above 2 Hz improved..
Technical Paper

Reducing the Amount of Lubricating Engine Oil by Using a New Crankshaft Bearing with Eccentric Oil Groove

2004-10-25
2004-01-3048
Oil pump down sizing is one of the effective method to improve engine friction loss. Reducing the required amount of lubricating engine oil can be achieved by the application of a new crankshaft bearing with an eccentric oil groove. By adopting a bearing with an eccentric groove, we found the well balanced specification which can keep the necessary amount of oil to the crankshaft pin and reduce leaking oil from crankshaft main journal. Measuring oil amount distribution in engine running condition simultaneously and checking capability of eliminating contamination analytically have achieved.
Technical Paper

Oxidation Stability of Diesel/Biodiesel Blends: Impact of Fuels Physical-Chemical Properties over Ageing During Storage and Accelerated Oxidation

2015-09-01
2015-01-1930
Current and future engine technologies and fuels are mutually dependent. The increased use of alternative fuels has been linked to deterioration in performance of injectors, fuel filters and engines as a result of insoluble deposit formation. The present work aimed to study the impact of Diesel/biodiesel blends formulation (biodiesel feedstock and content) and temperature on the oxidation stability based on total acid number (TAN). The biofuels used in the fuel matrix were: rapeseed, soy and palm methyl esters (RME, SME and PME respectively). The Diesel/biodiesel blends were made with 0%v/v, 5%v/v, 10% v/v and 20%v/v of biodiesel blended with additive-free new Diesel. The oxidation stability of Diesel/biodiesel blends was to evaluate during 6 months fuels storage, under 20°C and 40°C, and fuels severe oxidation into a reactor vessel to better understand the parameters leading to fuel oxidation on-board.
X