Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Using Pilot Diesel Injection in a Natural Gas Fueled HCCI Engine

2002-10-21
2002-01-2866
Previous research has shown that the homogeneous charge compression ignition (HCCI) combustion concept holds promise for reducing pollutants (i.e. NOx, soot) while maintaining high thermal efficiency. However, it can be difficult to control the operation of the HCCI engines even under steady state running conditions. Power density may also be limited if high inlet air temperatures are used for achieving ignition. A methodology using a small pilot quantity of diesel fuel injected during the compression stroke to improve the power density and operation control is considered in this paper. Multidimensional computations were carried out for an HCCI engine based on a CAT3401 engine. The computations show that the required initial temperature for ignition is reduced by about 70 K for the cases of the diesel pilot charge and a 25∼35% percent increase in power density was found for those cases without adversely impacting the NOx emissions.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

System Efficiency Issues for Natural Gas Fueled HCCI Engines in Heavy-Duty Stationary Applications

2002-03-04
2002-01-0417
Homogeneous Charge Compression Ignition (HCCI) has been proposed for natural gas engines in heavy duty stationary power generation applications. A number of researchers have demonstrated, through simulation and experiment, the feasibility of obtaining high gross indicated thermal efficiencies and very low NOx emissions at reasonable load levels. With a goal of eventual commercialization of these engines, this paper sets forth some of the primary challenges in obtaining high brake thermal efficiency from production feasible engines. Experimental results, in conjunction with simulation and analysis, are used to compare HCCI operation with traditional lean burn spark ignition performance. Current HCCI technology is characterized by low power density, very dilute mixtures, and low combustion efficiency. The quantitative adverse effect of each of these traits is demonstrated with respect to the brake thermal efficiency that can be expected in real world applications.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing

2017-03-28
2017-01-1035
Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response. This paper assesses the potential benefits of the electrically-assisted turbocharger with VGT to enable heavy-duty diesel engine downsizing.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Journal Article

On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle

2008-04-14
2008-01-1300
On-road comparisons were made between a federal reference method mobile emissions laboratory (MEL) and a portable emissions measurement system (PEMS) to support validation of the engine “Not To Exceed” (NTE) emissions design and to evaluate the accuracy of PEMS. Three different brake specific emissions calculation equations (methods) were used as part of this research, with method one directly using engine speed and torque, and methods two and three including ECM fuel consumption and carbon balance fuel consumption. The brake specific NOx emissions for the particular PEMS unit utilized in this program were consistently higher than those for the MEL. The brake specific (bs) NOx NTE deltas were +0.63±0.31 g/kW-h (0.47±0.23 g/hp-h), +0.55±0.17 g/kW-h (0.41±0.13 g/hp-h), and +0.54±0.17g/kW-h (0.40±0.13g/hp-h) for methods one, two, and three respectively.
Technical Paper

Numerical Simulation and Experimental Verification of Gasoline Intake Port Design

2015-04-14
2015-01-0379
The hybrid vehicle engines modified for high exhaust gas recirculation (EGR) is a good choice for high efficiency and low NOx emissions. However, high EGR will dilute the engine charge and may cause serious performance problems, such as incomplete combustion, torque fluctuation, and engine misfire. An efficient way to overcome these drawbacks is to intensify tumble leading to increased turbulent intensity at the time of ignition. The enhancement of turbulent intensity will increase flame velocity and improve combustion quality, therefore increasing engine tolerance to higher EGR. To achieve the goal of increasing tolerance to EGR, this work reports a CFD investigation of high tumble intake port design using STAR-CD. The validations had been performed through the comparison with PIV experimental tests.
Journal Article

New Developments in Diesel Oxidation Catalysts

2008-10-07
2008-01-2638
A number of oxidation catalysts have been prepared using different types of advanced support materials such as ceria-zirconia, silica-titania, spinels and perovskites. Active metals such as Pd and Au-Pd were loaded by conventional impregnation techniques and/or deposition-precipitation methods. A liquid hydrocarbon delivery system was designed and implemented for the catalyst test benches in order to simulate the diesel engine exhaust environment. The activity of fresh (no degreening) catalysts was evaluated with traditional CO and light hydrocarbons (C2H4, C3H6) as well as with heavy hydrocarbons such as C10 H22.
Technical Paper

Investigating Limitations of a Two-Zone NOx Model Applied to DI Diesel Combustion Using 3-D Modeling

2016-04-05
2016-01-0576
A two-zone NOx model intended for 1-D engine simulations was developed and used to model NOx emissions from a 2.5 L single-cylinder engine. The intent of the present work is to understand key aspects of a simple NOx model that are needed for predictive accuracy, including NOx formation and destruction phenomena in a DI Diesel combustion system. The presented two-zone model is fundamentally based on the heat release rate and thermodynamic incylinder data, and uses the Extended Zeldovich mechanism to model NO. Results show that the model responded very well to changes in speed, load, injection timing, and EGR level. It matched measured tail pipe NOx levels within 20%, using a single tuning setup. When the model was applied to varied injection rate shapes, it showed correct sensitivity to speed, load, injection timing, and EGR level, but the absolute level was well outside the target accuracy. The same limitation was seen when applying the Plee NOx model.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

HEUI - A New Direction for Diesel Engine Fuel Systems

1993-03-01
930270
Caterpillar Inc. has developed a new diesel engine fuel system, powered by hydraulics and controlled electronically. This Hydraulic Electronic Unit Injector, (HEUI), requires no mechanical actuating or mechanical control devices, and offers many advantages over conventional fuel injection systems. Inherent features of the HEUI Fuel System include injection pressure control independent of engine load or speed, totally flexible injection timing, and full electronic control of injection parameters. Packaging the HEUI Fuel System on an engine is simple, as the injector is compact and available in a variety of configurations. The hydraulic actuating circuit is straightforward, using lubricating oil from the engine sump. Hydraulic lines may be internal to the engine or external. This paper describes the Caterpillar HEUI Fuel System, its operating features, performance advantages, and application to diesel engines.
Technical Paper

Frictional Performance Test for Transmission and Drive Train Oils

1991-02-01
910745
Lubricating oil affects the performance of friction materials in transmission, steering and brake systems. The TO-2 Test measured friction retention characteristics of lubricating oils used with sintered bronze friction discs. This paper introduces a new friction performance test for drive train lubricants that will be used to support Caterpillar's new transmission and drive train fluid requirements, TO-4, which measures static and dynamic friction, wear, and energy capacity for six friction materials, and replaces the TO-2 test. The new test device to be introduced is an oil cooled, single-faced clutch in the Link Engineering Co. M1158 Oil/Friction Test Machine.
X