Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Simulation and Validation of Stator Modes of a Hairpin Motor

2023-05-08
2023-01-1074
With the trend of electric drive unit gradually replacing ICE powertrain, in additional to gear noise, the motor noise has become a new major NVH challenge. These tonal noises are easier to be detected in the pure electric vehicle that has no masking effect of ICE powertrain. Therefore, how to accurately predict and reduce the motor noise is a key to solve the problem. The accuracy of calculated motor stator modes determines the accuracy of motor noise prediction. This paper presents a simulation method based on the finite element model and defined orthotropic material properties of the stator. The material property parameters of the stator core and hairpin windings are reverse-engineered through iterative correlations to test data. High accuracy FEA model is achieved that can determine the stator mode shapes and frequencies of this hairpin motor accurately, which provides a reliable and effective approach for the motor noise prediction and optimization studies.
Technical Paper

Overall Transmission Error Calculation of Differential Gear

2021-08-31
2021-01-1101
Overall transmission error (OTE) of gear system has been a main focus of gear dynamics study. The input-output transmission error (TE) depends heavily on mesh phasing conditions. Only reducing loaded transmission error (LTE) of a single gear mesh is not enough to ensure good NVH performance in a multiple gear mesh system. In order to predict OTE during bevel gear design instead of just analyzing single mesh TE, a new bevel gear OTE calculation method will be presented in this study. Based on single mesh parameters including loaded and unloaded TE or mesh stiffness, the OTE of a differential gear set can be calculated without building a complete system model. The effect of phasing on system OTE shows that different tooth combination can have significant effect on dynamic performance which should be considered during design.
Technical Paper

NVH Simulation and Validation of a P3 Hybrid Driveline

2023-04-11
2023-01-0424
This paper focuses on a P3 HEV drivetrain for a performance vehicle with a 2-speed gear shift system. The drivetrain NVH performance varies at different gear and different loading conditions, therefore creates a new level of challenges in optimizing the system. This paper presents the methodologies in optimizing the system NVH, including noise sources from both gearbox and eMotor. CAE modeling methods are discussed and illustrated for their usage in optimizing both structural and acoustic responses. Reasonable correlations to test data are achieved and presented.
Technical Paper

NVH Analysis and Optimization of Engine Balance Shaft Module

2021-08-31
2021-01-1032
For any combustion engine, balance has always been important regardless of types of cylinder layout. One of the disadvantages of the inline four engines is the second-order unbalanced forces, which leads to high-frequency excitation of vehicle’s structure and consequent internal noise. Balance shaft modules (BSM) are often used in inline-four engines, to reduce the second-order vibration and mitigate engine imbalance. Balance shafts are often running at light load and high-speed condition which could induce both gear rattle and gear whine from the BSM gear set. Typically, scissor gear set is used between crankshaft and BSM to reduce the gear rattle noise. However, a poor scissor gear design could easily lead to unpleasant gear whine noise. There is an increasing trend to shorten development cycles and reduce cost using simulation models. This paper discusses an analytical method to simulate gear whine and rattle generated by engine BSM.
Technical Paper

Integration of Independent Front Axles for Gear Mesh Energy

2007-05-15
2007-01-2240
The need for improved axle NVH integration has increased significantly in recent years with industry trends toward full-time and automatic four wheel drive (4wd) systems. Along with seamless 4wd operation, quiet performance has become a universal expectation. Axle gear-mesh noise can be transmitted to the vehicle passenger compartment through airborne paths (not discussed in this paper) and structure-borne paths (the focus of this paper.) A variety of mounting configurations are used in an attempt to provide improved axle isolation and reduce structure-borne transmission of gear-mesh noise. The configuration discussed in this paper is a 4-point vertical mount design for an Independent Front Drive Axle (IFDA). A significant benefit of this configuration is improved isolation in the range of drive torques where axle-related NVH issues typically exist.
Technical Paper

Driveline NVH Integration of An NA Truck Program

2019-06-05
2019-01-1559
In the current automotive industry, it is common that the driveline subsystem and components are normally from different automotive suppliers for OEMs. In order to ensure proper system integration and successful development of driveline system NVH performances, collaboration efforts between OEMs and suppliers are very demanding and important. In this paper, a process is presented to achieve successfulness in developing and optimizing vehicle integration through effective teamwork between a driveline supplier and a major OEM. The development process includes multiple critical steps. They include target development and roll down, targets being specific and measurable, comprehension of interactions of driveline and vehicle dynamics, accurate definition of sensitivity, proper deployment of modal mapping strategy, which requires open data sharing; and system dynamics and optimization.
Technical Paper

Design Optimization of Differential Bevel Gear for NVH Improvement

2019-06-05
2019-01-1552
With fast pacing development of automobile industry and growing needs for better driving experience, NVH performance has become an important aspect of analysis in new driveline product development especially in hybrid and electric powered vehicles. Differential bevel gear has significant role in the final drive. Unlike parallel axis gears such as spur or helical gear, bevel gear mesh shows more complicated characteristics and its mesh parameters are mostly time-varying which calls for more extensive design and analysis. The purpose of this paper is to conduct design study on a differential bevel gear unit under light torque condition and evaluate its NVH characteristics. Unloaded tooth contact analysis (UTCA) of those designs are conducted and compared for several design cases with different micro geometry to investigate their pattern position and size variation effects on NVH response.
X