Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Rolling Bearings for High Performance Hydrostatic Drives Using Water Glycol Based Hydraulic Fluids

2000-09-11
2000-01-2588
Hydraulic fluids of the HFC category are aqueous polymer solutions with a fire resistance enhancing water content of 35 to approx. 50 %. The use of HFC fluids, above all in mobile and stationary drives in mining and in casting is subject to restrictions resulting from a number of features of a fluid. Field practice has shown that while axial-piston pumps may be successfully operated using HFC fluids, rolling bearing failures reduce their operational lifetimes. The bearing failures essentially result from material fatigue. This can be remedied by new quality steel for roller bearings. The combination of high fatigue life and corrosion resistance assures a wide application range for nitrogen-treated steel qualities.
Journal Article

Influence of Test Procedure on Friction Behavior and its Repeatability in Dynamometer Brake Performance Testing

2014-09-28
2014-01-2521
The efforts of the ISO “Test Variability Task Force” have been aimed at improving the understanding and at reducing brake dynamometer test variability during performance testing. In addition, dynamometer test results have been compared and correlated to vehicle testing. Even though there is already a vast amount of anecdotal evidence confirming the fact that different procedures generate different friction coefficients on the same brake corner, the availability of supporting data to the industry has been elusive up to this point. To overcome this issue, this paper focuses on assessing friction levels, friction coefficient sensitivity, and repeatability under ECE, GB, ISO, JASO, and SAE laboratory friction evaluation tests.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

Hydraulic Balancing to Improve Reliability of Military Hydraulic Components

1988-09-01
881297
The late and expected improvements in balancing design of hydraulics components to be sure to use real and relatively thick films to enhance the transmission gear of forces and torques with a very low level of friction forces and pratically without heating and wear. The RAFFO process allows high performances, low sensitivity to pollution and small machining cost.
Technical Paper

Human Thermal Comfort Model and Manikin

2002-06-03
2002-01-1955
Current vehicle climate control systems are dramatically overpowered because they are designed to condition the cabin air mass in a specified period of time. A more effective and energy efficient objective is to directly achieve thermal comfort of the passengers. NREL is developing numerical and experimental tools to predict human thermal comfort in non-uniform transient thermal environments. These tools include a finite element model of human thermal physiology, a psychological model that predicts both local and global thermal comfort, and a high spatial resolution sweating thermal manikin for testing in actual vehicles.
Technical Paper

Fatigue Technology in Vehicle Development

2001-03-05
2001-01-4081
Modern approaches to durability assurance in ground vehicle design are reviewed in the context of recent developments in computer-based analytical and experimental tools for use by designers and development engineers. Examples, using an automotive wheel assembly, are presented to illustrate the application of fatigue analysis in product development. Major challenges associated with the linking of various design tools into integrated networks appropriately configured for industrial problem solving are discussed along with an assessment of the potential benefits to be gained from such integration.
Technical Paper

Fatigue Properties of Die Cast Magnesium Alloys

2000-03-06
2000-01-1122
This paper provides a review of the fatigue properties reported in the open literature for die cast magnesium-based alloys. Recently developed fatigue data, in the form of stress versus number of cycles to failure for bending fatigue (R=-1), are presented for die cast AM60B and AZ91D alloy specimens with thicknesses between 1 and 10 mm. The effects of specimen thickness and macrostructural features, such as porosity distributions and surface features (parting line and ejection pin marks), on the fatigue data are discussed.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Effects of Section Size and Microstructural Features on the Mechanical Properties of Die Cast AZ91D and AM60B Magnesium Alloy Test Bars

1999-03-01
1999-01-0927
Reported tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys indicate that those values depend on the size and shape of the test samples and their global porosities. This paper reviews the mechanical properties reported in the open literature for these die cast alloys and indicates that section thickness and global porosity are inadequate for predicting the tensile and fatigue properties of die cast AZ91D and AM60B magnesium alloys.
Technical Paper

Development of Plasma Spray Coated Cylinder Liners

1996-02-01
960048
Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150°C to over 300°C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
Technical Paper

Application of a Self-Adjusting Audible Warning Device as a Backup Alarm for Mobile Earthmoving Equipment

2005-11-01
2005-01-3507
Most pieces of mobile equipment (machines) produce an audible signal to indicate movement in the rearward direction. This signal is intended to alert nearby personnel of the potential danger associated with the machine moving in a direction where the operator may not be able to see people or objects in the machine path. Anyone who has been on or near a construction site recognizes the familiar “beep…beep…beep…” of this signal as the backup alarm. To be effective, the backup alarm must be discernible, timely, and relevant to those people where a reaction is intended. As machine designers respond to various sound directives for reducing sound emissions (including the backup alarm), the performance of the backup alarm is receiving special attention. An emerging solution is an alarm capable of sensing ambient sounds and producing an audible signal proportional to the sensed sound levels-a self-adjusting backup alarm.
Journal Article

An Erosion Aggressiveness Index (EAI) Based on Pressure Load Estimation Due to Bubble Collapse in Cavitating Flows Within the RANS Solvers

2015-09-06
2015-24-2465
Despite numerous research efforts, there is no reliable and widely accepted tool for the prediction of erosion prone material surfaces due to collapse of cavitation bubbles. In the present paper an Erosion Aggressiveness Index (EAI) is proposed, based on the pressure loads which develop on the material surface and the material yield stress. EAI depends on parameters of the liquid quality and includes the fourth power of the maximum bubble radius and the bubble size number density distribution. Both the newly proposed EAI and the Cavitation Aggressiveness Index (CAI), which has been previously proposed by the authors based on the total derivative of pressure at locations of bubble collapse (DP/Dt>0, Dα/Dt<0), are computed for a cavitating flow orifice, for which experimental and numerical results on material erosion have been published. The predicted surface area prone to cavitation damage, as shown by the CAI and EAI indexes, is correlated with the experiments.
X