Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Time-Resolved Emission Sampling in a Direct-Injection Engine

1999-09-28
1999-01-3309
Time-resolved measurements were made of the gas composition at the exhaust port of a direct-injection two-stroke engine operating at 2000 rpm and an air-fuel ratio of 30:1. A high-speed sampling valve capable of 1.0 ms (12 CAD) time resolution was used to collect samples 1 cm downstream of the exhaust port of the engine. The time-resolved NOx, CO2 and CO concentrations decreased continuously during the scavenging process due to the dilution by short-circuited air. The hydrocarbon emissions, however, behaved significantly differently from the other species. At the time of exhaust port opening the concentration was low, it reached a maximum value by BDC, then decreased slightly in the latter part of the scavenging event. The dilution rates calculated for the hydrocarbon data gave negative values, indicating that there was a significant production of hydrocarbons during the gas exchange period.
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

Thermal Barrier Coatings For Low Emission, High Efficiency Diesel Engine Applications

1999-04-28
1999-01-2255
Thermal efficiencies of 54% have been demonstrated by single cylinder engine testing of advanced diesel engine concepts developed under Department of Energy funding. In order for these concept engines to be commercially viable, cost effective and durable systems for insulating the piston, head, ports and exhaust manifolds will be required. The application and development of new materials such as thick thermal barrier coating systems will be key to insulating these components. Development of test methods to rapidly evaluate the durability of coating systems without expensive engine testing is a major objective of current work. In addition, a novel, low cost method for producing thermal barrier coated pistons without final machining of the coating has been developed.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

The Effects of Split Injection and Swirl on a HSDI Diesel Engine Equipped with a Common Rail Injection System

2003-03-03
2003-01-0349
To overcome the trade-off between NOx and particulate emissions for future diesel vehicles and engines it is necessary to seek methods to lower pollutant emissions. The desired simultaneous improvement in fuel efficiency for future DI (Direct Injection) diesels is also a difficult challenge due to the combustion modifications that will be required to meet the exhaust emission mandates. This study demonstrates the emission reduction capability of split injections, EGR (Exhaust Gas Recirculation), and other parameters on a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system using an RSM (Response Surface Method) optimization method. The optimizations were conducted at 1757 rev/min, 45% load. Six factors were considered for the optimization, namely the EGR rate, SOI (Start of Injection), intake boost pressure, and injection pressure, the percentage of fuel in the first injection, and the dwell between injections.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

The Development of a Production Qualified Catalytic Converter

1993-03-01
930133
Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Journal Article

Ring Pack Crevice Effects on the Hydrocarbon Emissions from an Air-Cooled Utility Engine

2008-09-09
2008-32-0004
The effect of the ring pack storage mechanism on the hydrocarbon (HC) emissions from an air-cooled utility engine has been studied using a simplified ring pack model. Tests were performed for a range of engine load, two engine speeds, varied air-fuel ratio and with a fixed ignition timing using a homogeneous, pre-vaporized fuel mixture system. The integrated mass of HC leaving the crevices from the end of combustion (the crank angle that the cumulative burn fraction reached 90%) to exhaust valve closing was taken to represent the potential contribution of the ring pack to the overall HC emissions; post-oxidation in the cylinder will consume some of this mass. Time-resolved exhaust HC concentration measurements were also performed, and the instantaneous exhaust HC mass flow rate was determined using the measured exhaust and cylinder pressure.
Technical Paper

Reducing Particulate and NOx Using Multiple Injections and EGR in a D.I. Diesel

1995-02-01
950217
An emissions and performance study was conducted to explore the effects of EGR and multiple injections on particulate, NOx, and BSFC. EGR is known to be effective at reducing NOx, but at high loads there is usually a large increase in particulate. Recent work has shown that multiple injections are effective at reducing particulate. Thus, it was of interest to examine the possibility of simultaneously reducing particulate and NOx with the combined use of EGR and multiple injections. The tests were conducted on a fully instrumented single cylinder version of the Caterpillar 3406 heavy duty truck engine. Tests were done at high load (75% of peak torque at 1600 RPM where EGR has been shown to produce unacceptable increases in particulate emissions. The fuel system used was an electronically controlled, common rail injector and supporting hardware. The fuel system was capable of up to four independent injections per cycle.
Technical Paper

Radio-Frequency (RF) Technology for Filter Microwave Regeneration System*

2000-10-16
2000-01-2845
A new diesel exhaust particulate trap system was developed to control diesel particulate emissions from buses in large cities in China. This system was equipped with a microwave heater for the purpose of filter regeneration. To achieve effective and efficient filter regeneration, a radio-frequency (RF) technology was employed. The RF technology measured the amount of particulate trapped in filter, and it controlled filter regeneration using microwave signal. In this paper, the on-line diesel particulate measurement system was described, and experimental study of this measurement system was reported. The experimental results proved the effectiveness of the RF technology in the application of this diesel particulate trap system.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Plasma-Facilitated SCR of NOx in Heavy-Duty Diesel Exhaust

2001-09-24
2001-01-3570
This paper describes two independent studies on γ-alumina as a plasma-activated catalyst. γ-alumina (2.5 - 4.3 wt%) was coated onto the surface of mesoporous silica to determine the importance of aluminum surface coordination on NOx conversion in conjunction with nonthermal plasma. Results indicate that the presence of 5- and 6- fold aluminum coordination sites in γ-alumina could be a significant factor in the NOx reduction process. A second study examined the effect of changing the reducing agent on NOx conversion. Several hydrocarbons were examined including propene, propane, isooctane, methanol, and acetaldehyde. It is demonstrated that methanol was the most effective reducing agent of those tested for a plasma-facilitated reaction over γ-alumina.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Technical Paper

Optimization of a Large Diesel Engine via Spin Spray Combustion*

2005-04-11
2005-01-0916
A numerical simulation and optimization study was conducted for a medium speed direct injection diesel engine. The engine's operating characteristics were first matched to available experimental data to test the validity of the numerical model. The KIVA-3V ERC CFD code was then modified to allow independent spray events from two rows of nozzle holes. The angular alignment, nozzle hole size, and injection pressure of each set of nozzle holes were optimized using a micro-genetic algorithm. The design fitness criteria were based on a multi-variable merit function with inputs of emissions of soot, NOx, unburned hydrocarbons, and fuel consumption targets. Penalties to the merit function value were used to limit the maximum in-cylinder pressure and the burned gas temperature at exhaust valve opening. The optimization produced a 28.4% decrease in NOx and a 40% decrease in soot from the baseline case, while giving a 3.1% improvement in fuel economy.
Technical Paper

Optimization of Heavy-Duty Diesel Engine Operating Parameters Using A Response Surface Method

2000-06-19
2000-01-1962
A study of statistical optimization of engine operating parameters was conducted. The objective of the study was to develop a strategy to efficiently optimize operating parameters of diesel engines with multiple injection and EGR capabilities. Previous studies have indicated that multiple injections with EGR can provide substantial simultaneous reductions in emissions of particulate and NOx from heavy-duty diesel engines, but careful optimization of the operating parameters is necessary in order to receive the full benefit of these combustion control techniques. The goal of the present study was to optimize the control parameters to reduce emissions and brake specific fuel consumption. An instrumented single-cylinder heavy-duty diesel engine was used with a prototype mechanically actuated (cam driven) fuel injection system.
Technical Paper

Optimization of Diesel Engine Operating Parameters Using Neural Networks

2003-10-27
2003-01-3228
Neural networks are useful tools for optimization studies since they are very fast, so that while capturing the accuracy of multi-dimensional CFD calculations or experimental data, they can be run numerous times as required by many optimization techniques. This paper describes how a set of neural networks trained on a multi-dimensional CFD code to predict pressure, temperature, heat flux, torque and emissions, have been used by a genetic algorithm in combination with a hill-climbing type algorithm to optimize operating parameters of a diesel engine over the entire speed-torque map of the engine. The optimized parameters are mass of fuel injected per cycle, shape of the injection profile for dual split injection, start of injection, EGR level and boost pressure. These have been optimized for minimum emissions. Another set of neural networks have been trained to predict the optimized parameters, based on the speed-torque point of the engine.
X