Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Journal Article

Transient Liquid Penetration of Early-Injection Diesel Sprays

2009-04-20
2009-01-0839
Diesel low-temperature combustion strategies often rely on early injection timing to allow sufficient fuel-ambient mixing to avoid NOx and soot-forming combustion. However, these early injection timings permit the spray to penetrate into a low ambient temperature and density environment where vaporization is poor and liquid impingement upon the cylinder liner and piston bowl are more likely to occur. The objective of this study is to measure the transient liquid and vapor penetration at early-injection conditions. High-speed Mie-scatter and shadowgraph imaging are employed in an optically accessible chamber with a free path of 100 mm prior to wall impingement and using a single-spray injector. The ambient temperature and density within the chamber are well-controlled (uniform) and selected to simulate in-cylinder conditions when injection occurs at -40 crank-angle degrees (CAD) or fewer before top-dead center (TDC).
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Journal Article

The Feasibility of Using Raw Liquids from Fast Pyrolysis of Woody Biomass as Fuels for Compression-Ignition Engines: A Literature Review

2013-04-08
2013-01-1691
This study summarizes the peer-reviewed literature regarding the use of raw pyrolysis liquids (PLs) created from woody biomass as fuels for compression-ignition (CI) engines. First, a brief overview is presented of fast pyrolysis and the potential advantages of PLs as fuels for CI engines. Second, a discussion of the general composition and properties of PLs relative to conventional, petroleum-derived diesel fuels is provided, with emphasis on the differences that are most likely to affect PL performance in CI-engine applications. Next, a synopsis is given of the peer-reviewed literature describing experimental studies of CI engines operated using neat PLs and PLs combined in various ways with other fuels. This literature conclusively indicates that raw PLs and PL blends cannot be used as “drop-in replacements” for diesel fuel in CI engines, which is reflected in part by none of the cited studies reporting successful operation on PL fuels for more than twelve consecutive hours.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

The Evolution of Electronic Engine Diagnostics

1990-10-01
901158
Software systems on electronically controlled diesel truck engines typically provide diagnostic features to enable the engine mechanic to identify and debug system problems. As future systems become more sophisticated, so will the diagnostic requirements. The advantages of serviceability and accuracy found in todays electronic systems must not be allowed to degrade due to this increased sophistication. One method of maintaining a high level of serviceability and accuracy is to place an even greater priority on diagnostics and servicing in the initial design phase of the product than is done today. In particular, three major goals of future diagnostic systems should be separation of component failures from system failures, prognostication of failures and analysis of engine performance. This paper will discuss a system to realize these goals by dividing the diagnostic task into the Electronic System Diagnostics, Engine System Diagnostics and the Diagnostic Interface.
Technical Paper

The Effect of Mounting Structure Stiffness on Mounting System Isolation Performance on Off-Highway Machines

2015-06-15
2015-01-2350
Off-highway machine mounting system isolation, especially the cab mounting system, significantly affects the operator comfort by providing damping to the harsh inputs and isolating the structure-borne energy from traveling into the cab. Mounting system isolation performance is decided not only by the isolation component, but also the mounting bracket structure, and should be treated as a system. This paper gives a review of how the mounting system isolates structural energy and the effect of the bracket structure stiffness to the mounting system isolation performance.
Technical Paper

Temperature Effects on Fuel Sprays from a Multi-Hole Nozzle Injector

1996-10-01
962005
A study of fuel spray characteristics for diesel fuel from a multi-hole nozzle injector was performed yielding tip penetration length and spray cone angle for each of the spray plumes from a six hole injector. The main feature of the system used was that analysis of all the fuel plumes could occur at one time, as all the plumes were imaged on the same piece of film. Spray behavior was examined for two injection pressures (72 MPa and 122 MPa) and for ambient temperatures up to 523 K (250°C). The results in this paper show how the spray plumes behave as they leave each of the six holes of the injector. The characteristics of each hole differs during injection. The variations of spray cone angle and tip penetration length between holes are small, but significant. These variations in tip penetration and cone angle changed as the temperature of the chamber changed, but the overall characteristics of the spray plumes changed only slightly for the temperatures used in this paper.
Journal Article

Study of Soot Formation and Oxidation in the Engine Combustion Network (ECN), Spray A: Effects of Ambient Temperature and Oxygen Concentration

2013-04-08
2013-01-0901
Within the Engine Combustion Network (ECN) spray combustion research frame, simultaneous line-of-sight laser extinction measurements and laser-induced incandescence (LII) imaging were performed to derive the soot volume fraction (fv). Experiments are conducted at engine-relevant high-temperature and high-pressure conditions in a constant-volume pre-combustion type vessel. The target condition, called "Spray A," uses well-defined ambient (900 K, 60 bar, 22.8 kg/m₃, 15% oxygen) and injector conditions (common rail, 1500 bar, KS1.5/86 nozzle, 0.090 mm orifice diameter, n-dodecane, 363 K). Extinction measurements are used to calibrate LII images for quantitative soot distribution measurements at cross sections intersecting the spray axis. LII images are taken after the start of injection where quasi-stationary combustion is already established.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

Reinventing the Internal Combustion (IC) Engine Head and Exhaust Gaskets

2002-03-04
2002-01-0332
This paper describes how a blend of silicon polymers, mixed with the right combination of fillers, enables the production of durable rubber IC engine head and exhaust gaskets. The resin blend, when mixed with glass fiber reinforcement, produces a liquid sealant suitable for exhaust gasket applications. The exhaust sealant and laminate head gaskets were tested on Ford 460 truck engines at Jasper Engine Company and completed more than 5,000 hours of durability testing without incident. Fabric reinforced polymer (FRP) head and exhaust gaskets can be laser cut from molded laminates, creating a ceramic glass-sealed edge. Thermogravimetric scans of typical gasket laminate material reveal an 88%-yield at 1000°C. FRP head gaskets also enable the cost-effective production of multiple spark ignition (MSI) head gaskets.
Technical Paper

Regenerative Testing of Hydraulic Pump/Motor Systems

1994-09-01
941750
Regenerative testing methods can be used to allow the testing of hydraulic pumps and motors at significantly higher power and flow levels than that of the power supply used. This method can also increase the accuracy of system efficiency measurements. The increase in accuracy is realized because only the power added to compensate for the system losses needs to be measured with great accuracy. Typically, for the operation points of interest this will be a much smaller quantity than the overall power of the system. Knowing that the error in flow measurements is a function of the quantity measured, the benefit of measuring the losses becomes clear. An additional, distinct advantage of regenerative testing is that no dynamometer or load is needed. This results in a much simpler test setup. This paper documents the development of such a test program at the University of Wisconsin-Madison.
Technical Paper

Pump/Motor Displacement Control Using High-Speed On/Off Valves

1998-09-14
981968
A four valve controller and electronic control circuits were developed to control the displacement of hydrostatic pump/motors (P/M's) utilized in an automobile with a hydrostatic transmission and hydropneumatic accumulator energy storage. Performance of the control system was evaluated. The controller uses four high-speed, two-way, single-stage poppet valves, functioning in the same manner as a 4-way, 3-position spool valve. Two such systems were used to control the displacement of two P/Ms, each system driving a front wheel of the vehicle. The valves were controlled electronically by a distributed-control dead-band circuit and valve driver boards. Testing showed that the control system's time response satisified driving demand needs, but that the control system's error was slightly larger than desired. This may lead to complications in some of the vehicle's operating modes.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Journal Article

Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding

2013-04-08
2013-01-0917
This work is a technical review of past research and a synthesis of current understanding of post injections for soot reduction in diesel engines. A post injection, which is a short injection after a longer main injection, is an in-cylinder tool to reduce engine-out soot to meet pollutant emissions standards while maintaining efficiency, and potentially to reduce or eliminate exhaust aftertreatment. A sprawling literature on post injections documents the effects of post injections on engine-out soot with variations in many engine operational parameters. Explanations of how post injections lead to engine-out soot reduction vary and are sometimes inconsistent or contradictory, in part because supporting fundamental experimental or modeling data are often not available. In this paper, we review the available data describing the efficacy of post-injections and highlight several candidate in-cylinder mechanisms that may control their efficacy.
Technical Paper

Penetration and combustion characterization of cavitating and non-cavitating fuel injectors under diesel engine conditions

2016-04-05
2016-01-0860
This work investigates the effects of cavitation on spray characteristics by comparing measurements of liquid and vapor penetration as well as ignition delay and lift-off length. A smoothed-inlet, converging nozzle (nominal KS1.5) was compared to a sharp-edged nozzle (nominal K0) in a constant-volume combustion vessel under thermodynamic conditions consistent with modern compression ignition engines. Within the near-nozzle region, the K0 nozzle displayed larger radial dispersion of the liquid as compared to the KS1.5 nozzle, and shorter axial liquid penetration. Moving downstream, the KS1.5 jet growth rate increased, eventually reaching a growth rate similar to the K0 nozzle while maintaining a smaller radial width. The increasing spreading angle in the far field creates a virtual origin, or mixing offset, several millimeters downstream for the KS1.5 nozzle.
X