Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Discrete-Direct Model Calibration and Propagation Approach Addressing Sparse Replicate Tests and Material, Geometric, and Measurement Uncertainties

2018-04-03
2018-01-1101
This paper introduces the “Discrete Direct” (DD) model calibration and uncertainty propagation approach for computational models calibrated to data from sparse replicate tests of stochastically varying systems. The DD approach generates and propagates various discrete realizations of possible calibration parameter values corresponding to possible realizations of the uncertain inputs and outputs of the experiments. This is in contrast to model calibration methods that attempt to assign or infer continuous probability density functions for the calibration parameters-which incorporates unjustified information in the calibration and propagation problem. The DD approach straightforwardly accommodates aleatory variabilities and epistemic uncertainties in system properties and behaviors, in input initial and boundary conditions, and in measurement uncertainties in the experiments.
Journal Article

A Comparison of Methods for Representing and Aggregating Uncertainties Involving Sparsely Sampled Random Variables - More Results

2013-04-08
2013-01-0946
This paper discusses the treatment of uncertainties corresponding to relatively few samples of random-variable quantities. The importance of this topic extends beyond experimental data uncertainty to situations involving uncertainty in model calibration, validation, and prediction. With very sparse samples it is not practical to have a goal of accurately estimating the underlying variability distribution (probability density function, PDF). Rather, a pragmatic goal is that the uncertainty representation should be conservative so as to bound a desired percentage of the actual PDF, say 95% included probability, with reasonable reliability. A second, opposing objective is that the representation not be overly conservative; that it minimally over-estimate the random-variable range corresponding to the desired percentage of the actual PDF. The presence of the two opposing objectives makes the sparse-data uncertainty representation problem an interesting and difficult one.
X