Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

SMURRF - A Robotic Facility for Space Based Science Operations

1998-07-13
981698
Automation of space-based scientific operations minimizes the crew time needs for experiments while increasing the efficiency and quality of science operations. ORBITEC has completed the development of a space qualifiable prototype of a Shared Multi-Use Remote Robotics Facility (SMURRF). SMURRF, sized for a Middeck Locker (MDL) application, provides a simple, flexible, and functional manipulator to assist space operations, in manned or unmanned modes, carried out in lockers or racks onboard the Space Shuttle and the International Space Station (ISS). It will be primarily operated in an automated mode with additional remote command/control capability from the ground or from space. Ground trials have demonstrated that many operations can be autonomously performed without the presence of a human operator.
Technical Paper

Performance Evaluation of the Commercial Plant Biotechnology Facility

1998-07-13
981666
The demand for highly flexible manipulation of plant growth generations, modification of specific plant processes, and genetically engineered crop varieties in a controlled environment has led to the development of a Commercial Plant Biotechnology Facility (CPBF). The CPBF is a quad-middeck locker playload to be mounted in the EXPRESS Rack that will be installed in the International Space Station (ISS). The CPBF integrates proven ASTROCULTURE” technologies, state-of-the-art control software, and fault tolerance and recovery technologies together to increase overall system efficiency, reliability, robustness, flexibility, and user friendliness. The CPBF provides a large plant growing volume for the support of commercial plant biotechnology studies and/or applications for long time plant research in a reduced gravity environment.
Technical Paper

Control and Monitoring of Environmental Parameters in the ASTROCULTURE™ Flight Experiment

1995-07-01
951627
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test and integrate subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Flights on the Space Shuttle have demonstrated control of water movement through a particulate rooting material, growth chamber temperature and humidity control, LED lighting systems and control, recycling of recovered condensate, ethylene scrubbing, and carbon dioxide control. A complete plant growth unit was tested on STS-63 in February 1995, the first ASC flight in which plant biology experiments were conducted in microgravity. The methods and objectives used for control of environmental conditions in the ASC unit are described in this paper.
X