Refine Your Search

Topic

Author

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Theoretical and Experimental Analysis of Hydropiercing

2003-10-27
2003-01-2884
In this study, hydropiercing after hydroforming and prior to unloading was investigated. The primary purpose of this study was to investigate how the used hydropiercing method and the selected material and process parameters affect the hole quality. Hydropiercing inwards, hydropiercing by folding the ‘scrap’ piece inwards and hydropiercing outwards were tested. The tube material was extruded AA6063-T4. The tube diameter and wall thickness were 107 mm and 2.5 mm respectively. Straight 1110-mm long tubes of this material were first hydroformed at 1300 bar and then hydropierced. Assuming that the largest (in magnitude) acceptable deflection at the hole edge is 0.2 mm, hydropiercing inwards at ≥ 1300 bar yield the best hole quality. However, the remaining scrap piece (in the tube) causes a handling problem that must be solved.
Technical Paper

The Volvo 5-Cylinder Engine with 4-Valve Technology - A New Member of Volvos Modular Engine Family

1991-09-01
911906
During 1991 Volvo Car Corporation has introduced the new Volvo 850 GLT model featuring front wheel drive with transverse installation of the engine and gearbox. The powertrain; consists of a new in-line five-cylinder engine in combination with a four speed electronically controlled automatic gearbox or a five speed manual gearbox. The engine features DOHC 20 valves, V-VIS (Volvo Variable Induction System), well tuned exhaust system and microprocessor controlled engine management systems. The engine was designed and developed as a new member of Volvo's modular engine family. The first member was the in-line six-cylinder engine B6304F [1] introduced in 1990. The modular engines have a large number of identical components and the major components are machined in common transfer lines which makes the manufacturing process highly rational and cost-effective.
Technical Paper

The Sensitivity of Transient Response Prediction of a Turbocharged Diesel Engine to Turbine Map Extrapolation

2017-09-04
2017-24-0019
Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
Technical Paper

The Role of Carboxylate-Based Coolants in Cast Iron Corrosion Protection

2001-03-05
2001-01-1184
Nitrites have long been added to heavy-duty coolant to inhibit iron cylinder liner corrosion initiated by cavitation. However, in heavy-duty use, nitrites deplete from the coolant, which then must be refortified using supplemental coolant additives (SCA's). Recently, carboxylates have also been found to provide excellent cylinder liner protection in heavy-duty application. Unlike nitrites, carboxylate inhibitors deplete slowly and thus do not require continual refortification with SCA's. In the present paper laboratory aging experiments shed light on the mechanism of cylinder liner protection by these inhibitors. The performance of carboxylates, nitrites and mixtures of the two inhibitors are compared. Results correlate well with previously published fleet data. Specifically, rapid nitrite and slow carboxylate depletion are observed. More importantly, when nitrite and carboxylates are used in combination, nitrite depletion is repressed while carboxylates deplete at a very slow rate.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

The Door Mounted Inflatable Curtain

2006-04-03
2006-01-1437
It has been shown that Inflatable Curtains have the potential to reduce head injuries in side impacts and the system has accordingly been introduced on a growing number of car models. There is also a potential benefit in rollover situations. This paper only consider performance in situations with belted occupants. To date, it has not been possible to implement an Inflatable Curtain in convertible vehicles because they lack a roof. The challenge of the Door Mounted Inflatable Curtain (DMIC) has been to overcome the lack of support and fixation possibilities offered by a roof. This paper includes a description of the DMIC and how it was integrated into the vehicle structure. The paper will also show how to create the space and support needed to utilize the internal stiffness and make it possible to fill the bag in time. The impact attenuation and ejection protection functions of the DMIC will be demonstrated.
Technical Paper

The Development of a Production Qualified Catalytic Converter

1993-03-01
930133
Catalytic converters have become a viable aftertreatment system for reducing emissions from on-highway diesel engines. This paper addresses the development and production qualification of a catalytic converter. The testing programs that were utilized to qualify the converter system for production included emissions performance, emissions durability, physical durability, and field test programs. This paper reports on the specific tests that were utilized for the emissions performance and emissions durability testing programs. An explanation on the development of an accelerated durability test program is also included. The physical durability section of the paper discusses the development and execution of laboratory bench tests to insure the catalytic converter/muffler maintains acceptable physical integrity.
Journal Article

The Big Data Application Strategy for Cost Reduction in Automotive Industry

2014-09-30
2014-01-2410
Cost reduction in the automotive industry becomes a widely-adopted operational strategy not only for Original Equipment Manufacturers (OEMs) that take cost leader generic corporation strategy, but also for many OEMs that take differentiation generic corporation strategy. Since differentiation generic strategy requires an organization to provide a product or service above the industry average level, a premium is typically included in the tag price for those products or services. Cost reduction measures could increase risks for the organizations that pursue differentiation strategy. Although manufacturers in the automotive industry dramatically improved production efficiency in past ten years, they are still facing the pressure of cost control. The big challenge in cost control for automakers and suppliers is increasing prices of raw materials, energy and labor costs. These costs create constraints for the traditional economic expansion model.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Supporting Welding Methods for Future Light Weight Steel Car Body Structures

2002-07-09
2002-01-2091
In the continuous struggle to improve car body properties, and at the same time reduce the weight of the structure, new materials and body concepts are being evaluated. In competition with more self-evident lightweight materials such as aluminium and plastic composites, new and different grades of high-strength steels with various surface coatings are being introduced. From experience it is known that to be able to weld and join these steel grades under high-volume conditions, it is necessary to perform comprehensive testing to establish those assembly parameters which give a superior and reliable weld quality. To meet the demands of cost-effective low volume production, we can notice a tendency to move away from traditional uni-body concepts and into the direction of space-frame structures. These can preferably be manufactured out of high-strength steels by using production methods like roll-forming, hydro-forming and hot-forming.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Prediction and Measurement of Microstructure and Residual Stresses due to Electron Beam Welding Process

1999-04-14
1999-01-1872
Electron beam (EB) welding process is characterized by an extremely high power density that is capable of producing weld seams which are considerably deeper than width. Unlike other welding process, heat of EB welding is provided by the kinetic energy of electrons. This paper presents a computational model for the numerical prediction of microstructure and residual stress resulting from EB welding process. Energy input is modeled as a step function within the fusion zone. The predicted values from finite element simulation of the EB welding process agree well with the experimentally measured values. The present model is used to study an axial weld failure problem.
Technical Paper

Payload Measurement System on Off-Highway Trucks for Mine Applications

1987-11-08
871200
The need to accurately measure and record the payload of large off-highway mining trucks was identified by The Broken Hill Proprietary Co. Ltd. (BHP). In response. Caterpillar designed and developed a system to fufill that need. The payload carried by mine haul trucks has a strong influence on production rates and costs. The system developed should enable payloads to be much better controlled than has been previously possible. The system also provides a number of mine management features. The development of the system is described from the concept stage to the production stage. Final production capabilities of the microprocessor based system are described. Payload measurement capabilities, diagnostic capabilities, data storage, and data extraction methods are discussed.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
Technical Paper

Multi-material Approach with Integrated Joining Technologies in the New Volvo S80

1999-09-28
1999-01-3147
In May 1998 Volvo launched its most exclusive car model so far, the Volvo S80, which is aimed to compete with upper luxury segment products. The car is produced in the new production facility in the Torslanda plant in Sweden. Among the more highlighted features were a transversely mounted in-line six cylinder engine with a specially designed gearbox, electronic multiplex technology with 18 computers in the network, and safety features like stability and traction control (STC), front seats with integrated antiwhiplash system (WHIPS) and inflatable curtain (IC) for improved side impact protection. To fulfill the product's high demands on safety, quality and environmental care, the design, materials selection and assembly of the car body with high precision had to be very carefully engineered. As in previous product-/process development a holistic and concurrent engineering approach was necessary.
Technical Paper

Mid-Ranging Scheme for Idle Speed Control of SI Engines

2006-04-03
2006-01-0608
The article describes a model-based control method for idle speed of spark-ignition (SI) engines. It is based on mid-ranging, a multivariable control strategy that is more commonly used in process control. The basic building blocks of the control structure are two PI controllers.
Journal Article

Measurements of Energy Used for Vehicle Interior Climate

2014-11-01
2014-01-9129
Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
X