Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Transient Emissions from an Uncolled Diesel Engine

1986-05-01
860224
A Cummins B55 in3 350 bhp heavy-duty, turbocharged diesel engine was tested in fully cooled and uncooled modes over the EPA transient emission test cycles for comparison of gaseous and particulate emissions. The results are presented at the same fuel injection timing and at similar NOx emission levels. Also, steady state emission measurements and analysis of real-time transient emission data of selected runs are discussed. The uncooled engine does not represent an adiabatic (insulated) engine in its emission characateristics, but may indicate some trends. It may be useful in identifying design and/or operating parameters that need optimization.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Technical Paper

The Effect of Swirl Ratio and Fuel Injection Parameters on CO Emission and Fuel Conversion Efficiency for High-Dilution, Low-Temperature Combustion in an Automotive Diesel Engine

2006-04-03
2006-01-0197
Engine-out CO emission and fuel conversion efficiency were measured in a highly-dilute, low-temperature diesel combustion regime over a swirl ratio range of 1.44-7.12 and a wide range of injection timing. At fixed injection timing, an optimal swirl ratio for minimum CO emission and fuel consumption was found. At fixed swirl ratio, CO emission and fuel consumption generally decreased as injection timing was advanced. Moreover, a sudden decrease in CO emission was observed at early injection timings. Multi-dimensional numerical simulations, pressure-based measurements of ignition delay and apparent heat release, estimates of peak flame temperature, imaging of natural combustion luminosity and spray/wall interactions, and Laser Doppler Velocimeter (LDV) measurements of in-cylinder turbulence levels are employed to clarify the sources of the observed behavior.
Technical Paper

The Effect of Split Injection on Fuel Distribution in an Engine-Fed Combustion Chamber

1993-03-01
930864
This research focused on the effects of split injection on fuel spray behavior in a diesel environment. It was done in a special designed engine-fed combustion chamber (swirl ratio of 5) with full field optical access through a quartz window. The simulated engine combustion chamber used a special backwards spraying injector (105°). The electronically controlled injector could control the size and position of it's two injections. Both injections were through the same nozzle and it produced very rapid injections (1.5 ms) with a maximum injection pressure of 130 MPa. Experimental data included: rate of injection, injector pressure, spray plume images, tip penetration, liquid and vapor fuel distributions, combustion pressure, and rate of pressure rise. From 105° forward scatter images, tip penetration was observed to be very rapid and reached a plateau at 25 mm.
Technical Paper

Temperature Effects on Fuel Sprays from a Multi-Hole Nozzle Injector

1996-10-01
962005
A study of fuel spray characteristics for diesel fuel from a multi-hole nozzle injector was performed yielding tip penetration length and spray cone angle for each of the spray plumes from a six hole injector. The main feature of the system used was that analysis of all the fuel plumes could occur at one time, as all the plumes were imaged on the same piece of film. Spray behavior was examined for two injection pressures (72 MPa and 122 MPa) and for ambient temperatures up to 523 K (250°C). The results in this paper show how the spray plumes behave as they leave each of the six holes of the injector. The characteristics of each hole differs during injection. The variations of spray cone angle and tip penetration length between holes are small, but significant. These variations in tip penetration and cone angle changed as the temperature of the chamber changed, but the overall characteristics of the spray plumes changed only slightly for the temperatures used in this paper.
Technical Paper

Spray-Wall Dynamics of High-Pressure Impinging Combustion

2019-01-15
2019-01-0067
The fuel spray impingement on the piston head and/or chamber often occurs in compact IC engines. The impingement plays one of the key roles in combustion because it affects the air-fuel mixing process. In this study, the impinged combustion has been experimentally investigated to understand the mechanism and dynamics of flame-wall interaction. The experiments were performed in a constant volume combustion chamber over a wide range of ambient conditions. The ambient temperature was varied from 800 K to 1000 K and ambient gas oxygen was varied from 15% to 21%. Diesel fuel was injected with an injection pressure of 150 MPa into ambient gas at a density of 22.8 kg/m3. The natural luminosity technique was applied in the experiments to explore the impinged combustion process. High-speed images were taken using a high-speed camera from two different views (bottom and side). An in-house Matlab program was used to post-process the images.
Technical Paper

Spray Characterization in a DISI Engine During Cold Start: (1) Imaging Investigation

2006-04-03
2006-01-1004
Spray angle and penetration length data were taken under cold start conditions for a Direct Injection Spark Ignition engine to investigate the effect of transient conditions on spray development. The results show that during cold start, spray development depends primarily on fuel pressure, followed by Manifold Absolute Pressure (MAP). Injection frequency had little effect on spray development. The spray for this single hole, pressure-swirl fuel injector was characterized using high speed imaging. The fuel spray was characterized by three different regimes. Regime 1 comprised fuel pressures from 6 - 13 bar, MAPs from 0.7 - 1 bar, and was characterized by a large pre-spray along with large drop sizes. The spray angle and penetration lengths were comparatively small. Regime 2 comprised fuel pressures from 30 - 39 bar and MAPs from 0.51 - 0.54 bar. A large pre-spray and large drop sizes were still present but reduced compared to Regime 1.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Solutions to the Clean Snowmobile Challenge - What Works?

2005-10-24
2005-01-3681
The Society of Automotive Engineers' (SAE) Clean Snowmobile Challenge 2004 (CSC 2004) was held at Michigan Technological University in Houghton, Michigan, from March 15 - 20, 2004. The Clean Snowmobile Challenge has been a competition in the SAE Collegiate Design Series since 2000, and began in Jackson Hole, Wyoming, as a response to rising concerns about snowmobiling in environmentally-sensitive areas. Teams from fifteen universities competed in CSC 2004. The winning snowmobile (sled) was developed by the University of Wisconsin, Madison, and featured a four-stroke engine with electronic fuel injection (EFI), a two-stage tuned muffler, and catalytic exhaust aftertreatment. A hybrid-electric design was used to increase the snowmobile's powertrain output and improve acceleration. [8] Teams should be competitive in all events to gain enough points to win the competition.
Technical Paper

Schlieren and Mie Scattering Visualization for Single-Hole Diesel Injector under Vaporizing Conditions with Numerical Validation

2014-04-01
2014-01-1406
This paper reports an experimental and numerical investigation on the spatial and temporal liquid- and vapor-phase distributions of diesel fuel spray under engine-like conditions. The high pressure diesel spray was investigated in an optically-accessible constant volume combustion vessel for studying the influence of the k-factor (0 and 1.5) of a single-hole axial-disposed injector (0.100 mm diameter and 10 L/d ratio). Measurements were carried out by a high-speed imaging system capable of acquiring Mie-scattering and schlieren in a nearly simultaneous fashion mode using a high-speed camera and a pulsed-wave LED system. The time resolved pair of schlieren and Mie-scattering images identifies the instantaneous position of both the vapor and liquid phases of the fuel spray, respectively. The studies were performed at three injection pressures (70, 120, and 180 MPa), 23.9 kg/m3 ambient gas density, and 900 K gas temperature in the vessel.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Process for Study of Micro-pilot Diesel-NG Dual Fuel Combustion in a Constant Volume Combustion Vessel Utilizing the Premixed Pre-burn Procedure

2019-04-02
2019-01-1160
A constant volume spray and combustion vessel utilizing the pre-burn mixture procedure to generate pressure, temperature, and composition characteristic of near top dead center (TDC) conditions in compression ignition (CI) engines was modified with post pre-burn gas induction to incorporate premixed methane gas prior to diesel injection to simulate processes in dual fuel engines. Two variants of the methane induction system were developed and studied. The first used a high-flow modified direct injection injector and the second utilized auxiliary ports in the vessel that are used for normal intake and exhaust events. Flow, mixing, and limitations of the induction systems were studied. As a result of this study, the high-flow modified direct injection injector was selected because of its controlled actuation and rapid closure. Further studies of the induction system post pre-burn were conducted to determine the temperature limit of the methane auto-ignition.
Journal Article

Phenomenological Autoignition Model for Diesel Sprays Using Reduced Chemical Kinetics and a Characteristic Scalar Dissipation Rate

2017-03-28
2017-01-0523
This study focuses on the development of an autoignition model for diesel sprays that is applicable to phenomenological multi-zone combustion models. These models typically use a single-step Arrhenius expression to represent the low-temperature chemistry leading up to autoignition. There has been a substantial amount of work done in the area of n-heptane autoignition in homogeneous mixtures. Reduced kinetic mechanisms with ten reactions or less have been proposed in the literature to represent the complex low-temperature oxidation of n-heptane. These kinetic models are attractive for multi-zone simulations because of the low number of reactions involved. However, these kinetic mechanisms and the multi-zone treatment of the fuel spray do not account for the effect of turbulence/chemistry interactions on the chemical reaction rate.
Technical Paper

Performance and Emission Results from a Heavy-Duty Diesel Engine with Ducted Fuel Injection

2021-04-06
2021-01-0503
Ducted fuel injection (DFI) was tested for the first time in a heavy-duty diesel metal engine. It was implemented on a Caterpillar 2.5-liter single-cylinder heavy-duty diesel engine fitted with a common rail fuel system and a Tier 4 final production piston. Engine tests consisted of single-injection timing sweeps at A100 and C100, where rail pressure and exhaust gas recirculation (EGR) were also varied. A 6-hole fuel injector tip with 205 am orifices was used with a 130° spray angle and rail pressures up to 250 MPa. The ducts were 14 mm long, had a 2.5 mm inner diameter, and were placed 3.8 mm away from the orifice exits. The ducts were attached to a base, which in turn was attached to the cylinder head with bolts. Furthermore, alignment of the ducts and their corresponding fuel jets was accomplished.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Optimization of Fuel Injection Configurations for the Reduction of Emissions and Fuel Consumption in a Diesel Engine Using a Conjugate Gradient Method

2005-04-11
2005-01-1244
The objective of this study is the development of a computationally efficient CFD-based tool with the capability of finding optimal engine operating conditions with respect to emissions and fuel consumption. The approach taken uses a conjugate gradient method, where the line search is performed with a backtracking algorithm. The initial backtracking step employs an adaptive step size mechanism which depends on the steepness of the search direction. The engine simulations are performed with a KIVA-3-based code which is equipped with well-established spray, combustion and emission models. The cost function is based on the idea of the penalty method and is minimized over the unit cube in n-dimensional space, which represents the set of normalized injection parameters under investigation. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine.
X