Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Velocity Measurements

1996-10-01
961921
The object of this paper is to present a new way of analyzing in-cylinder velocity measurements. The technique is called Discrete Wavelet Transform (DWT) and it is similar to Fast Fourier Transform (FFT) with one important difference it is possible to obtain both time localized and frequency resolved information. This paper demonstrates the use of DWT calculations on in-cylinder LDV flow measurements for different combustion geometries in a natural gas converted truck engine. It will furthermore provide some information about how DWT can be used with in-cylinder measurements in the future.
Technical Paper

Wavelet Analysis of In-Cylinder LDV Measurements and Correlation Against Heat-Release

1998-02-23
980483
Wavelet analysis was used to calculate turbulence and mean velocity levels for LDV measurements made in a four valve spark ignition engine. Five different camshafts were tested, and they produce significantly different flow behaviour. The standard cam gives tumble and with valve deactivation, swirl is produced. One camshaft with early inlet valve closing and two camshafts with late inlet valve closing were also tested. The wavelet toolbox for Matlab version 5.1 has been used for the wavelet calculations. The wavelet technique produces both time resolved and frequency resolved velocity information. The results indicate some influence of the turbulence frequency content on the rate of heat release. Correlation against heat-release can be seen for different scales of turbulence. The breakdown of the tumble (low frequency turbulence) into high frequency turbulence can be seen clearly.
Technical Paper

Visualization techniques to identify and quantify sources and paths of exterior noise radiated from stationary and nonstationary vehicles

2000-06-12
2000-05-0326
In recent years, Nearfield Acoustical Holography (NAH) has been used to identify stationary vehicle exterior noise sources. However that application has usually been limited to individual components. Since powertrain noise sources are hidden within the engine compartment, it is difficult to use NAH to identify those sources and the associated partial field that combine to create the complete exterior noise field of a motor vehicle. Integrated Nearfield Acoustical Holography (INAH) has been developed to address these concerns: it is described here. The procedure entails sensing the sources inside the engine compartment by using an array of reference microphones, and then calculating the associated partial radiation fields by using NAH. In the second part of this paper, the use of farfield arrays is considered. Several array techniques have previously been applied to identify noise sources on moving vehicles.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine

2005-04-11
2005-01-0147
Autoignition of a homogeneous mixture is very sensitive to operating conditions. Therefore fast combustion phasing control is necessary for reliable operation. There are several means to control the combustion phasing of a Homogeneous Charge Compression Ignition (HCCI) engine. This paper presents cycle-to-cycle cylinder individual control results from a six-cylinder HCCI engine using a Variable Valve Actuation (VVA) system. As feedback signal, the crank angle for 50% burned, based on cylinder pressure, is used. Three control structures are evaluated, Model Predictive Control (MPC), Linear Quadratic Gaussian control (LQG) and PID control. In the control design of the MPC and LQG controller, dynamic models obtained by system identification were used. Successful experiments were performed on a port-injected six-cylinder heavy-duty Diesel engine operating in HCCI mode.
Technical Paper

Using a Statistical Machine Learning Tool for Diesel Engine Air Path Calibration

2014-09-30
2014-01-2391
A full calibration exercise of a diesel engine air path can take months to complete (depending on the number of variables). Model-based calibration approach can speed up the calibration process significantly. This paper discusses the overall calibration process of the air-path of the Cat® C7.1 engine using statistical machine learning tool. The standard Cat® C7.1 engine's twin-stage turbocharger was replaced by a VTG (Variable Turbine Geometry) as part of an evaluation of a novel air system. The changes made to the air-path system required a recalculation of the air path's boost set point and desired EGR set point maps. Statistical learning processes provided a firm basis to model and optimize the air path set point maps and allowed a healthy balance to be struck between the resources required for the exercise and the resulting data quality.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

Using Pilot Diesel Injection in a Natural Gas Fueled HCCI Engine

2002-10-21
2002-01-2866
Previous research has shown that the homogeneous charge compression ignition (HCCI) combustion concept holds promise for reducing pollutants (i.e. NOx, soot) while maintaining high thermal efficiency. However, it can be difficult to control the operation of the HCCI engines even under steady state running conditions. Power density may also be limited if high inlet air temperatures are used for achieving ignition. A methodology using a small pilot quantity of diesel fuel injected during the compression stroke to improve the power density and operation control is considered in this paper. Multidimensional computations were carried out for an HCCI engine based on a CAT3401 engine. The computations show that the required initial temperature for ignition is reduced by about 70 K for the cases of the diesel pilot charge and a 25∼35% percent increase in power density was found for those cases without adversely impacting the NOx emissions.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Technical Paper

Transmission Modulating Valve Simulation and Simulation Verification

1990-04-01
900917
This paper presents a response to the question: Simulation - mathematical manipulation or useful design tool? A mathematical model of a modulating valve in a transmission control system was developed to predict clutch pressure modulation characteristics. The transmission control system was previously reported in SAE Paper 850783 - “Electronic/Hydraulic Transmission Control System for Off-Highway Vehicles”. The comparison of simulation predictions with test data illustrates the effectiveness of simulation as a design tool. THE EVOLUTION OF COMPUTER hardware and simulation software has resulted in increased interest and usage of simulation for dynamic analysis of hydraulic systems. Most commercially available software is relatively easy to learn to use. The application of such software and the modeling techniques involved require a longer learning curve.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

Transient Responses of Various Ammonia Formation Catalyst Configurations for Passive SCR in Lean-Burning Gasoline Engines under Various Real Engine Conditions.

2016-04-05
2016-01-0935
Passive selective catalyst reduction (SCR) systems can be used as aftertreatment systems for lean burn spark ignition (SI)-engines. Their operation is based on the interaction between the engine, an ammonia formation catalyst (AFC), and an SCR catalyst. Under rich conditions the AFC forms ammonia, which is stored in the SCR catalyst. Under lean conditions, the SCR catalyst reduces the engine out NOx using the stored NH3. This study compared the ammonia production and response times of a standard three way catalyst (TWC) and a Pd/Al2O3 catalyst under realistic engine operating conditions. In addition, the relationships between selected engine operating parameters and ammonia formation over a TWC were investigated, considering the influence of both the chosen load point and the engine settings.
Technical Paper

Transient Fuel X-Tau Parameter Estimation Using Short Time Fourier Transform

2008-04-14
2008-01-1305
This paper presents a Short Time Fourier Transform based algorithm to identify unknown parameters in fuel dynamics system during engine cold start and warm-up. A first order system is used to model the fuel dynamics in a port fuel injection engine. The feed forward transient fuel compensation controller is designed based on the identified model. Experiments are designed and implemented to verify the proposed algorithm. Different experiment settings are compared.
Technical Paper

Transient Emission Predictions With Quasi Stationary Models

2005-10-24
2005-01-3852
Heavy trucks contribute significantly to the overall air pollution, especially NOx and PM emissions. Models to predict the emissions from heavy trucks in real world on road conditions are therefore of great interest. Most such models are based on data achieved from stationary measurements, i.e. engine maps. This type of “quasi stationary” models could also be of interest in other applications where emission models of low complexity are desired, such as engine control and simulation and control of exhaust aftertreatment systems. In this paper, results from quasi stationary calculations of fuel consumption, CO, HC, NOx and PM emissions are compared with time resolved measurements of the corresponding quantities. Measurement data from three Euro 3-class engines is used. The differences are discussed in terms of the conditions during transients and correction models for quasi stationary calculations are presented. Simply using engine maps without transient correction is not sufficient.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
X