Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Fatigue Damage and Dynamic Natural Frequency Response of Spot-Welded Joints

2003-03-03
2003-01-0695
The changes of dynamic frequency response, commonly used to determine the dynamic characteristic of built-up structures, were studied over the entire fatigue failure process for tensile-shear spot-welded joints. The results of an experimental study showed that the natural frequency varies non-linearly with the fatigue damage fraction. This behavior was modeled using finite element analysis of a progressively growing crack, initiating at the joining surface, then progressing to the outside surface of the specimen, and finally extending from the spot weld nugget. The relationship between dynamic frequency response and crack propagation may be applied to study effect of aging (high mileage) in NVH quality.
Technical Paper

Fatigue Analysis of Spot Welds Subjected to a Variable Amplitude Loading History

2001-03-05
2001-01-0435
A multiaxial spot weld damage parameter and a basic load-life approach are applied to proportional shear and peel loading for a standard SAE variable amplitude loading history. Miner's rule and the rainflow cycle counting method are used to calculate fatigue damage using constant amplitude load-life test data for various ratios of the combined loading. The calculations are compared to test results for an HSLA galv-annealed sheet steel obtained by using the DaimlerChrysler Spot Weld Design Committee multiaxial spot weld test fixture. The applicability of the methods are discussed, as are the crack initiation and propagation behavior of the specimens.
Technical Paper

FD&E Total Life T-Sample Residual Stress Analytical Predictions and Measured Results

2019-04-02
2019-01-0528
The Society of Automotive Engineers Fatigue Design & Evaluation Committee [SAE FD&E] is actively working on a total life project for weldments, in which the welding residual stress is a key contributor to an accurate assessment of fatigue life. Physics-based welding process simulation and various types of residual stress measurements were pursued to provide a representation of the residual stress field at the failure location in the fatigue samples. A well-controlled and documented robotic welding process was used for all sample fabrications to provide accurate inputs for the welding simulations. One destructive (contour method) residual stress measurement and several non-destructive residual stress measurements-surface X-ray diffraction (XRD), energy dispersive X-ray diffraction (EDXRD), and neutron diffraction (ND)-were performed on the same or similarly welded samples.
Technical Paper

Control of Interior Pressure Fluctuations Due to Flow Over Vehicle Openings

1999-05-17
1999-01-1813
Grazing flows over open windows or sunroofs may result in “flow buffeting,” i.e. self-sustained flow oscillations at the Helmholtz acoustic resonance frequency of the vehicle. The associated pressure fluctuations may cause passenger fatigue and discomfort. Many solutions have been proposed to solve this problem, including for example leading edge spoilers, trailing edge deflectors, and leading edge flow diffusers. Most of these control devices are “passive” i.e. they do not involve dynamic control systems. Active control methods, which do require dynamic controls, have been implemented with success for different cases of flow instabilities. Previous investigations of the control of flow-excited cavity resonance have used mainly one or more loudspeakers located within the cavity wall. In this study, oscillated spoilers hinged near the leading edge of the cavity orifice were used. Experiments were performed using a cavity installed within the test section wall of a wind tunnel.
Technical Paper

Comparison of Single Gear Tooth and Cantilever Beam Bending Fatigue Testing of Carburized Steel

1995-02-01
950212
The bending fatigue performance of gears, cantilever beam specimens, and notched-axial specimens were evaluated and compared. Specimens were machined from a modified SAE-4118 steel, gas-carburized, direct-quenched and tempered. Bending fatigue specimens were characterized by light metallography to determine microstructure and prior austenite grain size, x-ray analysis for residual stress and retained austenite measurements, and scanning electron microscopy to evaluate fatigue crack initiation, propagation and overload. The case and core microstructures, prior austenite grain sizes and case hardness profiles from the various types of specimens were similar. Endurance limits were determined to be about 950 MPa for both the cantilever beam and notched-axial fatigue specimens, and 1310 MPa for the single gear tooth specimens.
X