Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Numerical Simulation of Two-Phase Flow in the Second Header of MAC Condenser

2019-04-02
2019-01-1065
Phase separation circuiting have been proved in the past to effectively improve the performance of mobile air conditioning (MAC) condensers. In the vertical second header of the condenser, liquid separates from vapor mainly due to gravity, leaving vapor-rich flow with higher heat transfer coefficient to go into the upper passes. The condenser effectiveness is improved in this way. However, separation is usually not perfect, expressed through the separation efficiency (ηl and ηv). This paper presents the numerical study of phase separation phenomena in the second header. The Euler-Euler method of Computational Fluid Dynamics (CFD) is used. Simulations are conducted for two-phase refrigerant R-134a for MAC application. Inlet mass flow rate is simulated at values of 16 g∙s-1, 20 g∙s-1, and 30 g∙s-1 for 21 inlet microchannel tubes, which is the same 1st-pass tube number as of a real separation condenser. Corresponding mass fluxes are 166 kg∙m-2∙s-1, 207 kg∙m-2∙s-1, and 311 kg∙m-2∙s-1.
Technical Paper

Experimentally Validated Effects of Separation of Liquid and Vapor on Performance of Condenser and System

2017-03-28
2017-01-0162
This paper presents the results of an experimental study to determine the effect of vapor-liquid refrigerant separation in a microchannel condenser of a MAC system. R134a is used as the working fluid. A condenser with separation and a baseline condenser identical on the air side have been tested to evaluate the difference in the performance due to separation. Two categories of experiments have been conducted: the heat exchanger-level test and the system-level test. In the heat exchanger-level test it is found that the separation condenser condenses from 1.6% to 7.4% more mass flow than the baseline at the same inlet and outlet temperature (enthalpy); the separation condenser condenses the same mass flow to a lower temperature than the baseline condenser does. In the system-level test, COP is compared under the same superheat, subcooling and refrigerating capacity. Separation condenser shows up to 6.6% a higher COP than the baseline condenser.
Journal Article

Efficiency Improvement by Separation of Vapor and Liquid in Condenser Headers

2017-03-28
2017-01-0180
This paper introduces the concept of separation of two-phase flow in condenser as a way to improve condenser efficiency. The benefits of vapor-liquid refrigerant separation and the reason why it will improve the condenser performance are explained. Numerical studies are presented on the effects of separation on performance of an R134a microchannel condenser, with the comparison to experiment data. Model predicts that at the same mass flow rate, the exit temperature is lower by 2.2 K in the separation condenser compared with that in the baseline. Up to 9% more flow rate of condensate is also predicted by the model in the separation condenser. Experiment results confirm the same trend. In addition, the reason why a certain circuiting of passes with pre-assumed separation results in the header improves the condenser is investigated by the model and results are presented.
X