Refine Your Search

Topic

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

The Effect of Mounting Structure Stiffness on Mounting System Isolation Performance on Off-Highway Machines

2015-06-15
2015-01-2350
Off-highway machine mounting system isolation, especially the cab mounting system, significantly affects the operator comfort by providing damping to the harsh inputs and isolating the structure-borne energy from traveling into the cab. Mounting system isolation performance is decided not only by the isolation component, but also the mounting bracket structure, and should be treated as a system. This paper gives a review of how the mounting system isolates structural energy and the effect of the bracket structure stiffness to the mounting system isolation performance.
Technical Paper

The Artificial Intelligence Application Strategy in Powertrain and Machine Control

2015-09-29
2015-01-2860
The application of Artificial Intelligence (AI) in the automotive industry can dramatically reshape the industry. In past decades, many Original Equipment Manufacturers (OEMs) applied neural network and pattern recognition technologies to powertrain calibration, emission prediction and virtual sensor development. The AI application is mostly focused on reducing product development and validation cost. AI technologies in these applications demonstrate certain cost-saving benefits, but are far from disruptive. A disruptive impact can be realized when AI applications finally bring cost-saving benefits directly to end users (e.g., automation of a vehicle or machine operation could dramatically improve the efficiency). However, there is still a gap between current technologies and those that can fully give a vehicle or machine intelligence, including reasoning, knowledge, planning and self-learning.
Technical Paper

Solution of Excavator Hydrostatic Drive Instability by SNAS Technology

2002-03-19
2002-01-1425
Fluid power systems are widely used in agricultural and construction equipment for power conversion and transmission. Solving dynamic stability problems associated with complex and inherently nonlinear fluid power systems on this equipment is very challenging. In the past ten years, a new technology named SNAS (Symbolic/Numeric Analysis/Synthesis) has been developed and implemented by the author (Jiao Zhang). SNAS has been successfully applied to fluid power engineering area for optimizing system dynamic performance. In this paper the fundamentals of SNAS will be discussed and the successful application of SNAS to solve a hydrostatic drive instability problem will be presented.
Technical Paper

Results of Applying a Families-of-Systems Approach to Systems Engineering of Product Line Families

2002-11-18
2002-01-3086
Most of the history of systems engineering has been focused on processes for engineering a single complex system. However, most large enterprises design, manufacture, operate, sell, or support not one product but multiple product lines of related but varying systems. They seek to optimize time to market, costs of development and production, leverage of intellectual assets, best use of talented human resources, overall competitiveness, overall profitability and productivity. Optimizing globally across multiple product lines does not follow from treating each system family member as an independently engineered system or product. Traditional systems engineering principles can be generalized to apply to families. This article includes a multi-year case study of the actual use of a generic model-based systems engineering methodology for families, Systematica™, across the embedded electronic systems products of one of the world's largest manufacturers of heavy equipment.
Technical Paper

Process Control Standards for Technology Development

1998-04-08
981502
Engineering new technology and products challenges managers to balance design innovation and program risk. To do this, managers need methods to judge future results to avoid program and product disasters. Besides the traditional prediction tools of schedule, simulations and “iron tests”, process control standards (with measurements) can also be applied to the development programs to mitigate risks. This paper briefly discusses the theory and case history behind some new process control methods and standards currently in place at Caterpillar's Electrical & Electronics department. Process standards reviewed in this paper include process mapping, ISO9001, process controls, and process improvement models (e.g. SEI's CMMs.)
Technical Paper

Payload Measurement System on Off-Highway Trucks for Mine Applications

1987-11-08
871200
The need to accurately measure and record the payload of large off-highway mining trucks was identified by The Broken Hill Proprietary Co. Ltd. (BHP). In response. Caterpillar designed and developed a system to fufill that need. The payload carried by mine haul trucks has a strong influence on production rates and costs. The system developed should enable payloads to be much better controlled than has been previously possible. The system also provides a number of mine management features. The development of the system is described from the concept stage to the production stage. Final production capabilities of the microprocessor based system are described. Payload measurement capabilities, diagnostic capabilities, data storage, and data extraction methods are discussed.
Technical Paper

Model Based Design Accelerates the Development of Mechanical Locomotive Controls

2010-10-05
2010-01-1999
Smaller locomotives often use mechanical transmissions instead of diesel-electric drive systems typically used in larger locomotives. This paper discusses how Model Based Design was used to develop the complete drive train control system for a 24 ton sugar cane locomotive. A complete MATLAB Simulink machine model was built to fully test and verify the shift control logic, traction control, vehicle speed limiting, and braking control for this locomotive application before it was commissioned. The model included the engine, torque converter, planetary transmission, drive line, and steel on steel driving surface. Simulation was used to debug all control code and test and refine control strategies so that the initial field commissioning in remote Australia was executed very quickly with minimal engineering support required.
Technical Paper

Machine Learning Based Optimal Energy Storage Devices Selection Assistance for Vehicle Propulsion Systems

2020-04-14
2020-01-0748
This study investigates the use of machine learning methods for the selection of energy storage devices in military electrified vehicles. Powertrain electrification relies on proper selection of energy storage devices, in terms of chemistry, size, energy density, and power density, etc. Military vehicles largely vary in terms of weight, acceleration requirements, operating road environment, mission, etc. This study aims to assist the energy storage device selection for military vehicles using the data-drive approach. We use Machine Learning models to extract relationships between vehicle characteristics and requirements and the corresponding energy storage devices. After the training, the machine learning models can predict the ideal energy storage devices given the target vehicles design parameters as inputs. The predicted ideal energy storage devices can be treated as the initial design and modifications to that are made based on the validation results.
Journal Article

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

Incorporating INS with Carrier-Phase Differential GPS for Automatic Steering Control of a Farm Tractor

1999-09-14
1999-01-2851
This paper evaluates the use of a low cost inertial navigation system (INS) combined with Carrier-Phase Differential GPS (DGPS), to provide continuous position and attitude estimation for the control of a farm tractor. The INS system is used for dead-reckoning navigation to control the vehicle through short GPS outages. An Extended Kalman filter combines INS and Doppler radar measurements with cm-level Carrier-Phase Differential GPS measurements for continuous position and attitude estimation of the tractor. Results are given which verify the ability of the INS system to provide a heading accuracy within ±0.6° for control of the tractor. Additionally it is shown that the dead-reckoning system can provide position and attitude estimation to control the tractor to within ±0.3 meters through a short GPS outage.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Flexible Body Dynamic Simulation of a Large Mining Truck

1994-04-01
941117
A three dimensional mathematical model of a Caterpillar mining truck has been developed to simulate transient structural deformation and suspension response of a large mining truck traversing a known rough terrain course. The model incorporates compliant (finite element) representations of the truck frame, dump body, and rear axle housing into a dynamic mechanical system simulation model. Model results - frame acceleration, axle housing elastic deformation, and suspension response (strut pressures and displacements) are correlated with measured data from an instrumented truck traversing the steel speed bump portion of the rough terrain course. Results demonstrate that complex truck behavior can be simulated by combining finite element and mechanical system simulations.
Technical Paper

Extreme Field Test for Organic Additive Coolant Technology

2005-11-01
2005-01-3579
Field testing of an extended life coolant technology in Class 8 trucks, equipped with Caterpillar C-12 engines revealed excellent coolant life with negligible inhibitor depletion to 400,000 miles with no refortification and no coolant top-off. In separate evaluations in Caterpillar 3406E equipped trucks, extended corrosion protection and component durability were established out to 700,000 miles, without the need for refortification other than top-off.
Technical Paper

Development of an Electronic Underspeed Draft Control

1993-09-01
932426
A microprocessor based, underspeed draft control has been developed and introduced for use on belted agricultural tractors. This system does not rely on costly, strain sensitive pins for operation. By utilizing engine acceleration and deceleration rates, this system is able to respond quickly to needed changes in implement depth, while remaining stable under all operating conditions. The development process relied heavily on real-time computer simulation, minimizing the amount of actual field operation and substantially reducing the development time and expense.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

2013-09-24
2013-01-2441
The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

Coordinated Control of Multi-Degree-of Freedom Fuel Systems

1997-04-01
971559
This paper identifies potential performance benefits and computational costs of applying advanced multivariable control theory concepts to coordinate the control of a general multi-degree-of-freedom fuel system. The control variables are injection duration and pressure. The focus is on the design of a robust multi-input multi-output controller using H-infinity and mu synthesis methodology to coordinate the control of injection duration and pressure; reduce overshoots and system sensitivity to parameter variations caused by component aging. Model reduction techniques are used to reduce the order of the H-infinity controller to make it practically implementable. Computer simulation is used to test the robust performance of a generic engine and fuel system model controlled by the reduced order H-infinity controller and a traditional proportional plus integral controller.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
X