Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Reliability-Based Design Optimization with Model Bias and Data Uncertainty

2013-04-08
2013-01-1384
Reliability-based design optimization (RBDO) has been widely used to obtain a reliable design via an existing CAE model considering the variations of input variables. However, most RBDO approaches do not consider the CAE model bias and uncertainty, which may largely affect the reliability assessment of the final design and result in risky design decisions. In this paper, the Gaussian Process Modeling (GPM) approach is applied to statistically correct the model discrepancy which is represented as a bias function, and to quantify model uncertainty based on collected data from either real tests or high-fidelity CAE simulations. After the corrected model is validated by extra sets of test data, it is integrated into the RBDO formulation to obtain a reliable solution that meets the overall reliability targets while considering both model and parameter uncertainties.
Technical Paper

Demand Analysis for Decision-Based Design of Vehicle Engine

2004-03-08
2004-01-1535
Our research is motivated by the need for a rigorous engineering design framework and the need for developing a demand analysis approach that is critical for assessing the profit a product can bring. A Decision-Based Design framework is presented as a rigorous design approach and the method of Discrete Choice Analysis is applied in order to create a demand model that facilitates engineering decision-making in vehicle design with an emphasis on engine design. Through interdisciplinary collaborations, we illustrate how the gap between market research and engineering analysis can be bridged in product design.
Journal Article

Analyzing Customer Preference to Product Optional Features in Supporting Product Configuration

2017-03-28
2017-01-0243
For achieving viable mass customization of products, product configuration is often performed that requires deep understanding on the impact of product features and feature combinations on customers’ purchasing behaviors. Existing literature has been traditionally focused on analyzing the impact of common customer demographics and engineering attributes with discrete choice modeling approaches. This paper aims to expand discrete choice modeling through the incorporation of optional product features, such as customers’ positive or negative comments and their satisfaction ratings of their purchased products, beyond those commonly used attributes. The paper utilizes vehicle as an example to highlight the range of optional features currently underutilized in existing models. First, data analysis techniques are used to identify areas of particular consumer interest in regards to vehicle selection.
X