Refine Your Search

Topic

Author

Search Results

Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Truck Aerodynamics

1962-01-01
620531
A requirement for larger trucks and higher operating speed is indicated. The present report presents wind tunnel data on drag of a Chevrolet truck-trailer combination. Possible means of drag reduction are examined. Although side force and yawing moment data are presented, their effect on directional stability are not, at present analyzed.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Effect of Exhaust System Geometry on Exhaust Dilution and Odor Intensity

1971-02-01
710219
Diesel exhaust gas dilution and odor intensity were measured in the immediate vicinity of a transit bus equipped with a rear-mounted horizontal exhaust pipe, a rear-mounted vertical exhaust pipe, and a roof-top diffusion system. Exhaust dilution ratios were measured indoors during vehicle idle operation, using propane added to the exhaust gas as a tracer. Exhaust odor intensities were measured also indoors during vehicle idle operation by a human panel, using a threshold odor measurement technique. On the average, the dilution of the exhaust gas around the bus with the vertical exhaust pipe was about eight times greater than it was with the horizontal pipe. Odor intensity, as measured by the threshold response distance, was about 35% less with the vertical pipe than with the horizontal pipe. The roof-top diffuser was not as effective as the vertical exhaust pipe in increasing exhaust gas dilution or in reducing exhaust odor intensity.
Technical Paper

The Design and Development of the 2003 Chevrolet Kodiak and GMC TopKick Medium Duty Trucks

2002-11-18
2002-01-3100
For model year 2003, the General Motors Corporation is introducing new medium duty trucks - the Chevrolet Kodiak and GMC TopKick. These new trucks replace the previous versions of the Kodiak and TopKick medium duty trucks that were introduced in 1989 and the Chevrolet and GMC 3500HD that debuted in the 1991 model year. This new series of trucks marks a clear change in General Motors' strategy in the medium duty marketplace. It emphasizes General Motors' strong commitment to the medium duty market, as well as a strong focus on customer needs, vehicle quality and reliability. This paper describes the General Motors strategy in the medium duty market, along with the history of the design and development of these new products. Finally, this paper will discuss performance to program objectives.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Sideband and Sound Field Spatial Considerations in the Measurement of Gear Noise

2005-05-16
2005-01-2517
Measurement of gear noise requires accurate measurement of gear mesh harmonic sound levels. The sound signal may include sidebands, such that the frequency bandwidth and computation method of respective “order tracking” analysis will have a profound effect on measured sound levels. A further consideration is the spatial distribution of the sound field inside typical passenger cars and light duty trucks, in which sound levels can change dramatically within small distances. This paper provides a discussion of the data processing and measurement location effects at hand. It explains their influence and provides guidelines for their selection.
Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Procedures for Experimental Characterization of Thermal Properties in Li-Ion Battery Modules and Parameters Identification for Thermal Models

2024-04-09
2024-01-2670
Concerns about climate change have significantly accelerated the process of vehicle electrification to improve the sustainability of the transportation sector. Increasing the adoption of electrified vehicles is closely tied to the advancement of reliable energy storage systems, with lithium-ion batteries currently standing as the most widely employed technology. One of the key technical challenges for reliability and durability of battery packs is the ability to accurately predict and control the temperature of the cells and temperature gradient between cells inside the pack. For this reason, accurate models are required to predict and control the cell temperature during driving and charging operations. This work presents a set of procedures tailored to characterize and measure the thermal properties in li-ion cells and modules.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

POWERMATIC A New Automatic for Chevrolet Transmission Heavy-Duty Trucks

1957-01-01
570012
THIS paper describes the development of a truck automatic transmission, from a statement of broad objectives through the growing pains, to road testing of the final product. Emphasis is placed upon original thinking that led to the decision to undertake such a project, compromises that suggested themselves throughout the various stages, and features tried and found wanting as well as those retained. The finished product is described full though not in detail, stress being placed upon interesting and novel design features.
Technical Paper

Model-Based Design of a Hybrid Powertrain Architecture with Connected and Automated Technologies for Fuel Economy Improvements

2020-04-14
2020-01-1438
Simulation-based design of connected and automated hybrid-electric vehicles is a challenging problem. The design space is large, the systems are complex, and the influence of connected and autonomous technology on the process is a new area of research. The Ohio State University EcoCAR Mobility Challenge team developed a comprehensive design and simulation approach as a solution. This paper covers the detailed simulation work conducted after initial design space reduction was performed to arrive at a P0-P4 hybrid vehicle with a gasoline engine. Two simulation environments were deployed in this strategy, each with unique advantages. The first was Autonomie, which is a commercial software tool that is well-validated through peer-reviewed studies. This allowed the team to evaluate a wide range of components in a robust simulation framework.
Technical Paper

Low-Power Flexible Controls Architecture for General Motors Partnership for a New Generation (Pngv) Precept Vehicle

2000-11-01
2000-01-C060
The complexity of designing and implementing a vehicle electrical control system for ultra fuel-efficient hybrid vehicles is significantly greater than that of a conventional vehicle. To quickly demonstrate and iterate capabilities of these vehicles, an efficient and rapid means for developing requirements, mapping these into an electrical control and communications architecture, and developing prototype systems is needed. The General Motors Precept concept vehicle is an example of an energy- efficient vehicular control system developed using a "requirements to software'' development process and electronic controller infrastructure that demonstrates these attributes. The Precept is General Motors Corporation's technology demonstration concept vehicle developed to address General Motors Corporation's commitment to the Partnership for a New Generation (PNGV) program.
Technical Paper

Improving Computational Efficiency for Energy Management Systems in Plug-in Hybrid Electric Vehicles Using Dynamic Programming based Controllers

2023-08-28
2023-24-0140
Reducing computational time has become a critical issue in recent years, particularly in the transportation field, where the complexity of scenarios demands lightweight controllers to run large simulations and gather results to study different behaviors. This study proposes two novel formulations of the Optimal Control Problem (OCP) for the Energy Management System of a Plug-in Hybrid Electric Vehicle (PHEV) and compares their performance with a benchmark found in the literature. Dynamic Programming was chosen as the optimization algorithm to solve the OCP in a Matlab environment, using the DynaProg toolbox. The objective is to address the optimality of the fuel economy solution and computational time. In order to improve the computational efficiency of the algorithm, an existing formulation from the literature was modified, which originally utilized three control inputs.
Technical Paper

Implementation of Adaptive Equivalent Consumption Minimization Strategy

2024-04-09
2024-01-2772
Electrification of vehicles is an important step towards making mobility more sustainable and carbon-free. Hybrid electric vehicles use an electric machine with an on-board energy storage system, in some form to provide additional torque and reduce the power requirement from the internal combustion engine. It is important to control and optimize this power source split between the engine and electric machine to make the best use of the system. This paper showcases an implementation of the Adaptive Equivalent Consumption Minimization Strategy (A-ECMS) with minimization in real-time in the dSPACE MicroAutobox II as the Hybrid Supervisory Controller (HSC). While the concept of A-ECMS has been well established for many years, there are no published papers that present results obtained in a production vehicle suitably modified from conventional to hybrid electric propulsion including real world testing as well as testing on regulatory cycles.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
Research Report

Final Disposition of Electric Vehicle Batteries

2022-11-15
EPR2022026
The battery electric vehicle (EV) industry has experienced considerable growth over the last few years, demonstrating a clear acceleration in adoption and deployment. However, there are still many questions concerning what will happen to batteries as they reach their end of life (EOL), as batteries that have “aged out” can either be reused, recycled, or go to a landfill. Final Disposition of Electric Vehicle Batteries addresses some unsettled issues around lithium-ion battery reuse and recycling. Insufficient investment and regulations are a current barrier to a robust reuse system, and safety concerns potentially hinder adoption. Despite the benefits of battery recycling, there are also many challenges when considering their transportation and disassembly. These challenges will need to be addressed as the industry sees an influx of EV batteries reaching their EOL within the next 10 years. Click here to access the full SAE EDGETM Research Report portfolio.
Technical Paper

Estimating the Cost Impact of Lightweighting Automotive Closures

2015-04-14
2015-01-0581
The approaching corporate average fuel economy (CAFE) regulations will again increase with new model years (MY). The U.S. Government finalized a regulation requiring cars and light trucks average 54.5 mpg fuel economy for MY2025. Vehicle manufacturers recognize removing weight is a key feature to meeting their targets for fuel economy and emission reductions. One common OEM strategy is the implementation of incremental weight reductions to attain these goals. The automotive industry continues to look for opportunities to reduce weight and cost while continually increasing performance and safety. Lightweighting technologies enhance vehicle performance, (fuel economy, acceleration, braking and emissions). New materials are available to reduce weight; however the incremental cost for the weight reduction can be prohibitive. This study will encompass the utilization of lightweight materials, as well as current and evolving manufacturing processes.
Technical Paper

Diagnostic Assistant Based on Graphical Probabilistic Models

2004-03-08
2004-01-0680
Electro-Motive Division of GM jointly with HRL Laboratories have developed a software tool, called TechPro, which assists in troubleshooting of diesel locomotives. The tool has been tested extensively in the field for the last two years. It has improved significantly the quality of diagnosis of locomotives. The tool is based on Graphical Probabilistic Models and Case Data Bases. We will discuss the design of the tool, its performance and will show its relevance to diagnosis of automobiles.
Technical Paper

Development of a PEM Fuel Cell System for Vehicular Application

1992-08-01
921541
Allison Gas Turbine Division of General Motors is performing the first phase of a multiphase development project aimed at demonstrating an electric vehicle based on a proton exchange membrane (PEM) fuel cell. This work is sponsored by the Office of Transportation Technologies of the U.S. Department of Energy (DoE) through the DoE's Chicago Field Office (Contract No. DE-AC02-90CH10435). This work complements major efforts under way to produce electric vehicles for reducing pollution in key urban areas. Battery powered vehicles will initially satisfy niche markets where limited range vehicles can meet commuter needs. The PEM fuel cell/battery hybrid using methanol as fuel potentially offers an extremely attractive option to increasing the range, payload, and/or performance of battery powered vehicles.
X