Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Influence of Design Parameters on Light Propeller Aircraft Noise

1977-02-01
770444
Through research and test work, the aircraft industry has gained a better knowledge of the design parameters which influence the noise produced by light propeller driven aircraft. The parameters found to have a major affect on the noise include: propeller tip speed, propeller blade tip thickness, and engine exhaust system characteristics. To date, many special design considerations such as geared or shrouded propellers have not proven effective in reducing noise levels. When developing an aircraft for reduced noise, its cost, performance, and utility must be considered.
Journal Article

System Integration of a Safe, High Power, Lithium Ion Main Battery into a Civil Aviation Aircraft

2010-11-02
2010-01-1770
The Cessna Citation CJ4, certified on March 12, 2010, is believed to be the first civil aircraft with a Lithium Ion main battery. The 26.4VDC, 44Ah Lithium Ion main battery weighs 54 lbs, a 35% weight saving over a Nickel-Cadmium battery. Using phosphate-based Lithium Ion cells, which have no positive feedback thermal runaway failure mode, system integration of the battery and aircraft architecture design is simpler. Electronics and software are needed to optimize life only, not to ensure safety. Emergency discharge with failed electronics is enabled with the selection of a less volatile chemistry, the use of an analog Module Management System for cell balancing and protection, and the use of a microcontroller-based digital Central Monitoring System that reports health. System safety failure hazard assessment is considered Major, and the battery software is certified to the requirements of RTCA DO-178B, Design Assurance Level C.
Technical Paper

Further Results of Natural Laminar Flow Flight Test Experiments

1985-04-01
850862
Flight test experiments were conducted to measure the extent and nature of natural laminar flow on a smoothed test region of a swept-wing business jet wing. Surface hot film aneraometry and sublimating chemicals were used for transition detection. Surface pressure distributions were measured using pressure belts. Engine noise was monitored by a microphone attached to the wing surface to study possible acoustic effects on stability of the laminar boundary layer, Side-slip conditions were flown to simulate changes in effective wing sweep. Flight instrumentation and ground data analysis techniques and a method for measuring intermittency of turbulence are described, Correlation was obtained between the hot film gage signals and chemicals for transition detection. Cross-flow vortices were observed for some flight conditions. Results of spectral and statistical analysis of the hot film signals for various flight test conditions are presented.
X