Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

The Structure of Cavitation and its Effect on the Spray Pattern in a Single-Hole Diesel Nozzle

2001-05-07
2001-01-2008
The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole perpendicular to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that, at the inception stage, cavitation bubbles are dominantly seen in the vortices at the boundary layer shear flow and outside the separation zone. Cavitation bubbles grow intensively in the shear layer and develop into cloud-like coherent structures when viewed from the side of the nozzle. Shedding of the coherent cloud cavitation was observed. When the flow was increased further the cloud like cavitation bubbles developed into a large-scale coherent structure extending downstream of the hole. Under this condition the cavitation starts as a mainly glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric.
Technical Paper

Simulations of Fuel/Air Mixing, Combustion, and Pollutant Formation in a Direct Injection Gasoline Engine

2002-03-04
2002-01-0835
Simulations of a Direct Injection Spark Ignition (DISI) engine have been performed for both early injection with homogeneous charge combustion and for late injection with stratified charge combustion. The purpose has been to study flow characteristics, fuel/air mixing, combustion, and NOx and soot formation. Focus is put on the combustion modeling. Two different full load cases with early injection are simulated, 2000 rpm and 6000 rpm. One load point with late injection is simulated, 2000 rpm and 2.8 bar net MEP. Three different injection timings are simulated at the low load point: 77, 82, and 87 CAD bTDC. The spray simulations are tuned to match measured spray penetrations and droplet size distributions at both atmospheric and elevated pressure. Boundary conditions for the engine simulations are taken from 1-D gas exchange simulations that are tuned to match engine tests.
Technical Paper

Randomness of Flame Kernel Development in Turbulent Gas Mixture

1998-10-19
982617
An expanding cylindrical laminar flame kernel affected by random external strain rates and diffusivity is numerically simulated in order to gain insight into the influence of small-scale turbulence on the combustion variability in engines. In the simulations, the kernel is strained, as a whole, by external velocity gradients randomly generated with either Gaussian or log-normal probability density functions. The influence of small-scale turbulent heat and mass transfer is modeled by turbulent diffusivity, the randomness of which is controlled by the fluctuations in the viscous dissipation averaged over the kernel volume. The computed results show that small-scale phenomena can substantially affect the quenching characteristics of a small flame kernel and the kernel growth history rj(t); the scatter of the computed curves of rf(t) being mainly controlled by the scatter of the duration of the initial stage of kernel development.
Technical Paper

Oxidation of Hydrocarbons Released from Piston Crevices of S.I. Engines

1995-10-01
952539
This work presents a numerical method for predictions of HC oxidation in the cold turbulent wall jet emerging from the piston top land crevice in an S.I. engine, using a complex chemical reaction model. The method has been applied to an engine model geometry with the aim to predict the HC oxidation rate under engine - relevant conditions. According to the simulation a large amount of HC survives oxidation due to the long ignition delay of the wall jet emitted from the crevice. This ignition delay, in turn depends mainly on chemical composition and temperature of the gas mixture in the crevice and also on the temperature distribution in the cylinder boundary layer.
Technical Paper

Investigation of Spark Position Effects in a Small Pre-chamber on Ignition and Early Flame Propagation

2000-10-16
2000-01-2839
Lean gas engines have a potential for a significant reduction in both fuel consumption and emission levels. The use of a small pre-chamber with controlled stoichiometric or rich mixture composition is an effective way to deal with ignition problems in such engines. A constant volume vessel equipped with a device for generation of turbulence of known quantities is used to study the operation of a cylindrical pre-chamber of 1% of the main chamber volume. Pressure was measured in the main chamber and Schlieren images of the flame initiation and propagation in the main chamber were recorded for all set-ups. The investigation of the pre-chamber is focused on the position of the spark within the pre-chamber. Spark locations close to the orifice and close to the opposite wall as well as in the middle of the pre-chamber were tested and flame evolution and pressure history were studied.
Technical Paper

A Simple Model of Unsteady Turbulent Flame Propagation

1997-10-01
972993
A model of premixed turbulent combustion is modified for multi-dimensional computations of SI engines. This approach is based on the use of turbulent flame speed in order to suggest a closed balance equation for the mean combustion progress variable. The model includes a single unknown input parameter to be tuned. This model is tested against two sets of experimental data obtained by Bradley et al [17, 18 and 19] and Karpov and Severin [15] in fan-stirred bombs. The model quantitatively predicts the development of the turbulent flame speed, the effects of the initial pressure, temperature, and mixture composition on the turbulent flame speed, and the effects of r.m.s. turbulent velocity and burning mixture composition on the rate of the pressure rise. These results were computed with the same value of the aforementioned unknown input parameter of the model.
X