Refine Your Search

Topic

Author

Search Results

Technical Paper

The Lever Analogy: A New Tool in Transmission Analysis

1981-02-01
810102
A new tool for analyzing transmissions that use planetary gearsets is presented. With this tool, entire transmissions are usually represented by a single lever, and the calculation of most characteristics is as simple as summing moments of a lever. A miniature cookbook of levers, for various planetary arrangements is included which can be helpful in selecting a planetary to achieve the desired objectives of a user.
Technical Paper

The Fatigue Performance of High Temperature Vacuum Carburized Nb Modified 8620 Steel

2007-04-16
2007-01-1007
The bending fatigue performance of high temperature (1050 °C) vacuum carburized Nb modified 8620 steel, with niobium additions of 0.02, 0.06 and 0.1 wt pct, was evaluated utilizing a modified Brugger specimen geometry. Samples were heated at two different rates (20 and 114 °C min-1) to the carburizing temperature resulting in different prior austenite grain structures that depended on the specific Nb addition and heating rate employed. At the lower heating rate, uniform fine grained prior austenite grain structures developed in the 0.06 and 0.1 Nb steels while a duplex grain structure with the presence of large (>200 μm grains) developed in the 0.02 Nb steel. At the higher heating rate the propensity for abnormal grain growth was highest in the 0.02 Nb steel and complete suppression of abnormal grain growth was achieved only with the 0.1 Nb steel.
Technical Paper

The Effective Unloading Modulus for Automotive Sheet Steels

2006-04-03
2006-01-0146
In stamping advanced high strength steels (AHSS), the deviations from desired part geometry caused by springback from a radius, curl, twist, and bow are major impediments to successfully producing AHSS parts. In general, the conventional elastic modulus is used to quantify the strain that occurs on unloading. This unloading strain causes deviations from desired part geometry. Considerable evidence in the literature indicates that for tensile testing, the conventional elastic modulus does not accurately describe the unloading strain. The present study uses new data and results from the literature to examine the average slope of tensile stress strain curves on unloading. This slope is termed the effective unloading modulus. The results from this study quantitatively describe how the effective unloading modulus decreases with increasing strength, prestrain, and unloading time.
Technical Paper

The Effect of Strain Rate on the Sheet Tensile Properties and Formability of Ferritic Stainless Steels

2003-03-03
2003-01-0526
High strain rate sheet tensile tests (up to 300s-1) and Ohio State University (OSU) formability tests (up to an estimated strain rate of 10s-1) were performed to examine the effect of strain rate on the mechanical properties and formability of five ferritic stainless steels: HIGH PERFORMANCE-10™ 409 (HP-10 409), ULTRA FORM® 409 (UF 409), HIGH PERFORMANCE-10™ 439 (HP-10 439), two thicknesses of 18 Cr-Cb™ stainless steel, all supplied by AK Steel, and Duracorr®, a ferrite-tempered martensite dual-phase stainless steel supplied by Bethlehem Steel Corporation. Tensile results show that increasing strain rate resulted in increases in yield stress, flow stress, and stress at instability for all alloys tested. In addition, increases in uniform and total elongation were also found for each of the five alloys.
Technical Paper

The Effect of Reheat Treatments on Fatigue and Fracture of Carburized Steels

1994-03-01
940788
The effects of austenite grain size on the bending fatigue crack initiation and fatigue performance of gas carburized, modified 4320 steels were studied. The steels were identical in composition except for phosphorus concentration which ranged between 0.005 and 0.031 wt%. Following the carburizing cycle, specimens were subjected to single and triple reheat treatments of 820°C for 30 minutes to refine the austenite grain structure, and oil quenched and tempered at 150°C. Specimens subjected to bending fatigue were characterized by light metallography to determine microstructure and grain size, X-ray analysis for retained austenite and residual stress measurements, and scanning electron microscopy for examination of fatigue crack initiation and propagation. The surface austenite grain size ranged from 15 μm in the as-carburized condition to 6 and 4 μm diameter grain size for the single and triple reheat conditions, respectively.
Technical Paper

The Effect of Forging Conditions on the Flow Behavior and Microstructure of a Medium Carbon Microalloyed Forging Steel

1994-03-01
940787
Forging simulations with a 1522 steel microalloyed by additions of 0.25% Mo, 0.13% V and 0.01% Ti were performed on a laboratory thermomechanical processing simulator. The forging conditions included a strain rate of 22s-1, 50% strain, and temperatures in the range from 1200°C to 950°C. The true stress was found to increase with decreasing deformation temperature for all values of instantaneous true strain. The maximum flow stress increased two-fold as deformation temperature decreased from 1200°C to 950°C, and the recrystallized austenite grain size decreased by a factor of two for this same decrease in temperature. Microstructures evolve from bainitic/ferritic at a cooling rate of 1.4°C/s, to fully martensitic at 16.8°C/s, independent of deformation temperature. Room temperature hardnesses depended primarily on cooling rate and were essentially independent of deformation temperature.
Technical Paper

The Effect of Chromium and Chromium-Free Post-Phosphating Rinses on the Corrosion Performance of Zinc and Zinc Alloy Coated Sheet Steels After Five Years Outdoor Scab Corrosion Exposure

1993-10-01
932358
A selection of commercially available chromium and chromium-free post phosphate rinses along with a deionized water rinse were evaluated over several zinc and zinc-alloy coated sheet steels. The test specimens were pretreated and electrocoated on-line in an automotive assembly plant. The effect of the rinse treatments on the cosmetic corrosion performance of the substrates, after 5 years of exposure in an outdoor scab corrosion test was determined. After this exposure none of the rinse treatments had performed better than deionized water rinse on zinc and zinc-iron coated sheet. The zinc-nickel coating showed improved scribe creepage when treated with the Cr+6/Cr+3 rinse. Data is provided comparing the concentration of the treatments used vs scribe creepage and chipping corrosion paint loss.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The Development of Accelerated Component Durabiltiy Test Cycles Using Fatigue Sensitive Editing Techniques

1992-02-01
920660
A method is proposed to qualify automotive component designs in the laboratory using multiaxial real time load/strain input data acquired in the field. Fatigue damage analysis methods are used to edit the field data to produce an accelerated test cycle that retains all of the damaging real time load histories present in the original test cycle. Use of this procedure can contribute to a significant reduction in product design/development time.
Technical Paper

The Chrysler PowerFlite Transmission

1954-01-01
540261
THE design and construction of the PowerFlite automatic transmission are described by the authors. It is of the torque converter type, some models being water-cooled, while others are direct air cooled. Details of the hydraulic controls are explained, including the one-piece shift valve and the shuttle valve for controlling closed-throttle shifts. It is claimed that this transmission has relative simplicity, light weight, and smoothness of operation.
Technical Paper

The Application of Graphics Engineering to Gear Design

1986-10-01
861347
A highly competitive market and increased emphasis on quality have gear designers searching for additional tools to produce accurate gearsets in a condensed timeframe. To meet this challenge, a Graphics Engineering method has been developed to enhance traditional gear design techniques. Graphics Engineering links interactive graphics, finite element analysis and solid modeling into a graphics/analysis development package. Starting with gear and cutter data derived by conventional techniques, it provides cutter paths and involute profiles for geometry, strength, and physical property analysis. The comprehensive data obtained through Graphics Engineering provides a powerful tool for the gear designer to increase gearset accuracy and reduce design iterations.
Technical Paper

Tensile Properties of Steel Tubes for Hydroforming Applications

2004-03-08
2004-01-0512
With the increased use of tubular steel products, especially for automotive hydroforming applications, there is increased interest in understanding the mechanical properties measured by tensile tests from specimens of different orientations in the tube. In this study, two orientations of tensile specimens were evaluated -- axial specimens with and without flattening and flattened circumferential specimens. Three steels were evaluated -- two thicknesses of aluminum killed drawing quality (AKDQ) steel and one thickness of high strength low alloy (HSLA) steel. Mechanical property data were obtained from the flat stock, conventional production tubes and quasi tubes. Quasi tubes were produced from the flat stock on a 3-roll bender, but the quasi tube was not welded or sized.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

Survey of Encoding Techniques for Vehicle Multiplexing

1991-02-01
910715
This paper proposes the adaptation of a modulation technique called Modified Frequency Modulation (MFM) to vehicle multiplexing. MFM was developed during the latter 1960's for use in magnetic disk drives. Disk drives use MFM encoding to achieve a maximum density of recorded data on a disk. The advantage in vehicle multiplexing is that the technique is synchronous with an average of 0.75 transitions per bit. Another advantage is that it can tolerate a large amount of rise and fall time wave shaping, which can significantly reduce radiated EMI. The paper will compare the EMI characteristics generated by NRZ, PWM, VPWM, Manchester, and MFM encoding. Included are typical encoding requirements such as symbol generation, arbitration capabilities, latency, invalid bit testing as well as encoding techniques effect on the host microcomputer.
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Statistical Decision Making in FMVSS Testing

1989-02-01
890771
This paper presents a method of accounting for sample variability and sample size in establishing the acceptable bogey levels. The technique makes use of the statistical tolerance theory which accounts for the variability of the sample mean and standard deviation by determining a K-factor adjusted for sample size. The result is a tolerance that is reasonably assumed to cover a specified fraction of the population of parts. The technique, although not as simple as a fixed bogey, does discriminate between designs with different levels of energy management robustness.
Technical Paper

Static and Dynamic Dent Resistance Performance of Automotive Steel Body Panels

1997-02-24
970158
In recent years, strict weight reduction targets have pushed auto manufacturers to use lighter gauge sheet steels in all areas of the vehicle including exterior body panels. As sheet metal thicknesses are reduced, dentability of body panels becomes of increasing concern. Thus, the goal becomes one of reducing sheet metal thickness while maintaining acceptable dent resistance. Most prior work in this area has focused on quasi-static loading conditions. In this study, both quasi-static and dynamic dent tests are evaluated. Fully assembled doors made from mild, medium strength bake hardenable and non-bake hardenable steels are examined. The quasi-static dent test is run at a test speed of 0.1 m/minute while the dynamic dent test is run at a test speed of 26.8 m/minute. Dynamic dent testing is of interest because it more closely approximates real life denting conditions such as in-plant handling and transit damage, and parking lot damage from car door and shopping cart impact.
Technical Paper

Springback Prediction in Sheet Forming Simulation

1994-03-01
940937
Although numerical simulation techniques for sheet metal forming become increasingly maturing in recent years, prediction of springback remains a topic of current investigation. The main point of this paper is to illustrate the effectiveness of a modelling approach where static implicit schemes are used for the prediction of springback regardless whether a static implicit or dynamic explicit scheme is used in the forming simulation. The approach is demonstrated by revisiting the 2-D draw bending of NUMISHEET'93 and numerical results on two real world stampings.
Technical Paper

Sheet Thinning during Plane-Strain Bending

2009-04-20
2009-01-1394
Knowledge of the net thinning strain that occurs in a sheet as it is bent over a single radius is an important component in understanding sheet metal formability. The present study extends the initial work of Swift on thinning during plane-strain bending to sheet steels with power law stress-strain behavior and with the inclusion of friction. The experimental data come from studies on the enhanced forming limit curve on DQSK steel and analysis of the curl behavior of 590R and DP600 steels. Results for single radius bending from these studies are used in the present investigation. It has been found that the amount of net thinning strain depends on back tension, initial plane-strain yield strength, and the maximum true bending strain calculated for the neutral plane at the mid-thickness of the sheet.
X