Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

Vapor-Locking Tendencies of Fuels A Practical Approach

1958-01-01
580034
THIS paper describes what the authors consider to be a simplified method of determining the vapor-locking tendencies of gasolines. The study of vapor lock was undertaken after they found the Reid vapor pressure method to be inadequate. The result of their work was the development of the General Motors vapor pressure, a single number which predicts vapor-locking tendency. The authors point out the following advantages of the new method: It allows direct comparisons of vapor-lock test results of different reference fuel systems; establishes distribution curves of volatility requirements of cars for vapor-lock free operation and of vapor-locking tendencies of gasolines; is a common reference value for both petroleum and automotive engineers. Finally, it more realistically evaluates the effects of small weathering losses on vapor-locking tendency than does Rvp.
Technical Paper

Vapor and Liquid Composition Differences Resulting from Fuel Evaporation

1999-03-01
1999-01-0377
Liquid fuels and the fuel vapors in equilibrium with them typically differ in composition. These differences impact automotive fuel systems in several ways. Large compositional differences between liquid and vapor phases affect the composition of species taken up within the evaporative emission control canister, since the canister typically operates far from saturation and doesn't reach equilibrium with the fuel tank. Here we discuss how these differences may be used to diagnose the mode of emission from a sealed container, e.g., a fuel tank. Liquid or vapor leaks lead to particular compositions (reported here) that depend on the fuel components but are independent of the container material. Permeation leads to emissions whose composition depends on the container material. If information on the relative permeation rates of the different fuel components is available, the results given here provide a tool to decide whether leakage or permeation is the dominant mode of emission.
Technical Paper

Vapor Pressure Equations for Characterizing Automotive Fuel Behavior Under Hot Fuel Handling Conditions

1997-05-01
971650
A simple set of equations has been developed to characterize automotive fuel behavior in fuel tanks, fuel vapor systems and fuel rails, particularly under hot weather conditions. The system of equations links the vapor pressure P, the temperature T, and the mass fraction evaporated Z. Parameters are determined empirically from laboratory vapor pressure and distillation tests. With appropriate values for heat capacity, heat of vaporization, and vapor composition, the equations can be used to estimate upper flammability limits, fuel weathering under hot fuel handling conditions, pressure rise in tanks, and evaporative vapor generation. The equations were developed as part of a larger fuel vapor system model.
Technical Paper

Vacuum EGR Valve Actuator Model

1998-05-04
981438
As part of a general EGR system model, an adiabatic thermodynamic vacuum EGR valve actuator model was developed and validated. The long term goal of the work is improved system operation by correctly specifying and allocating EGR system component requirements.
Technical Paper

Two Alternative, Dielectric-Effect, Flexible-Fuel Sensors

1992-02-01
920699
This paper describes two types of dielectric-effect sensors that may be used as alternatives to a dielectric-effect sensor using a single capacitor. In the first type, three capacitors are mounted in a compact module inserted into a vehicle fuel line. The three capacitors are connected together to form an electrical pi-filter network. This approach provides a large variation of output signal as the fuel changes from gasoline to methanol. The sensor can be designed to operate in the 1 to 20 MHz frequency range. The second type of sensor investigated uses a resonant-cavity structure. Ordinarily, sensors based on resonant cavities are useful only if the operating frequency is several hundred MHz or higher. The high relative dielectric constant of methanol allows useful sensors to be built using relatively short lengths of metal tubing for the cavities. For example, a sensor built using a fuel rail only 38.7 cm long operated in a frequency range from 31 to 52 MHz.
Technical Paper

Transient A/F Estimation and Control Using a Neural Network

1997-02-24
970619
A new estimator for IC engine A/F ratio is described. A/F ratio is important for engine operation since it determines the quantities of engine emissions, such as HC, CO, NOx, the conversion efficiency of catalyst systems, and the engine combustion stability. The A/F ratio estimator described in this paper is based on a fundamental metric that relies on inducing and detecting crankshaft speed fluctuations caused by modulating the engine's fuel injection pulse widths. Fuel pulse width modulation varies the instantaneous combustion A/F ratio crankshaft velocity. Synchronous measurement of crankshaft velocity provides a metric that, when used with other engine state variables as inputs to a conventional neural network, can accurately estimate A/F ratio. The estimator provides A/F information when a physical sensor is not available.
Technical Paper

Titania Exhaust Gas Sensor for Automotive Applications

1979-02-01
790140
The change in the resistance of titanium dioxide with oxygen partial pressure is utilized to obtain an air-to-fuel ratio sensor. TiO2 material properties, sensor components and performance characteristics are discussed. Some results of engine dynamometer and vehicle tests of sensor performance and durability are presented.
Technical Paper

The Strain Gauge Goniometer, a New Sensor to Measure Dummy Joint Angles Under Crash Conditions

2000-03-06
2000-01-0058
The paper describes the use of strain gauge goniometers to measure dummy leg joint angles in impact tests. The instruments have been developed based on regular goniometers used for human gait analysis. Specific modifications enhanced the mechanical stability and the electrical insulation of the sensors. They are now compatible with standard crash data acquisition systems. Several vehicle crash tests have been analyzed using the goniometers as a supplementary measurement device. Due to its low weight, the device does not significantly alter the dummy behavior. Further areas of application are outlined in the paper.
Technical Paper

The Occurrence of Flash Boiling in a Port Injected Gasoline Engine

1998-10-19
982522
The occurrence of flash boiling in the fuel spray of a Port Fuel Injected (PFI) spark ignition engine has been observed and photographed during normal automotive vehicle operating conditions. The flash boiling of the PFI spray has a dramatic affect on the fuel spray characteristics such as droplet size and spray cone angle which can affect engine transient response, intake valve temperature and possibly hydrocarbon emissions. A new method of correlating the spray behavior using the equilibrium vapor/liquid (V/L) volume ratio of the fuel at the measured fuel temperature and manifold pressure is introduced.
Technical Paper

The New PLYMOUTH Engine

1956-01-01
560019
PLYMOUTH'S new V-8 engine has a specific output of 0.65 bhp/cu in. and 145-psi bmep — obtained through a combination of high thermal, volumetric, and mechanical efficiencies. Good design, the author points out, has achieved this high output despite the dual-venturi carburetor and the 7.6/1 compression ratio, selected for satisfactory operation on regular-grade fuels. The engine has a bore and stroke of 3.563 × 3¼, weighs 568 lb without flywheel, is 29⅜ in. long, and is designed for optimum response to future compression ratio increases. (A report of oral discussion following presentation of this paper appears on p. 220, following “The New Packard V-8 Engine,” by W. E. Schwieder.)
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

The Effects of Small Fuel Droplets on Cold Engine Emissions Using Ford's Air Forced Injection System

1995-10-01
952479
The effect of port injected small fuel droplets was evaluated for several different modes of engine operation. The droplets were generated by an Air Forced Injector (AFI), Figure 1, which uses high velocity air through a nozzle to produce fuel droplets on the order of 10mm Sauter Mean Diameter (SMD). AFI results were compared to those from a standard production pintle injector. Steady state data, “motored cold start” data, and injector cut-out data were collected. All three data sets illustrate functional advantages of AFI over standard Electronic Fuel Injection (EFI). Steady state testing showed that the AFI delivers complete freedom for specifying injection timing with respect to HC emissions. This freedom is highly advantageous for transient conditions because open valve injection with small droplets causes much less port wall wetting. Therefore, less control system compensation is necessary, and more accurate air-fuel ratio control is achievable.
Technical Paper

The Effect of MMT on the OBD-11 Catalyst Efficiency Monitor

1993-10-01
932855
The effect of MMT on the OBD-II catalyst efficiency monitor has been investigated. The results conclusively show that manganese which is deposited onto the catalyst during the combustion of MMT- containing fuel provides for an increased level of catalyst oxygen storage capacity. This added oxygen storage was found to result in a reduced rear EGO sensor response and caused malfunctioning catalysts to be incorrectly diagnosed by the OBD-II catalyst efficiency monitor.
Technical Paper

The Effect of Fuel Sulfur on the OBD-II Catalyst Monitor

1997-10-01
972855
The effect of fuel sulfur on the dual HEGO sensor OBD-II catalyst monitor has been investigated. Laboratory studies revealed two competing effects of the fuel sulfur on the operation of the catalyst monitor: 1. the loss of catalyst oxygen storage capacity, and 2. the degradation in the response rate of the rear HEGO sensor. The magnitude of the loss in catalyst OSC relative to the increase in rear HEGO sensor response time determined whether the rear HEGO sensor index increased, decreased, or remained constant as the fuel sulfur level was increased. The effect of fuel sulfur on tailpipe emissions and the catalyst monitor was also measured for two LEVs equipped with Pd-only catalyst technology (a 1997MY Escort and a 1998MY Crown Victoria). For both vehicles, the effect of the fuel sulfur on the rear HEGO sensor response characteristics dominated; as the fuel sulfur level was increased, tailpipe emissions increased, but the rear HEGO sensor index decreased.
Technical Paper

The Development of Ford's Natural Gas Powered Ranger

1985-11-11
852277
Operation of America's first factory built vehicles modified to operate on natural gas began in April, 1984, when Ford Motor Company delivered the first of 27 specially equipped 1984 Ranger pickup trucks to 25 major utility and natural gas related companies in the United States and Canada. In addition to the fuel system, modifications to these test vehicles include a 12.8:1 compression ratio engine and a unique distributor calibration to provide performance similar to the gasoline powered vehicle. The fuel tanks are significantly more expensive than gasoline tanks and remain one of the major cost issues with a natural gas powered vehicle. There are however, no unresolvable technological issues that would prevent motor vehicles from operating economically and efficiently on natural gas.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The Behavior of Multiphase Fuel-Flow in the Intake Port

1994-03-01
940445
Most of the current fuel supply specifications, including the key parameters in the transient fuel control strategies, are experimentally determined since the complexity of multiphase fuel flow behavior inside the intake manifold is still not quantitatively understood. Optimizing these specifications, especially the parameters in transient fueling systems, is a key issue in improving fuel efficiency and reducing exhaust emissions. In this paper, a model of fuel spray, wall-film flow and wall-film vaporization has been developed to gain a better understanding of the multiphase fuel-flow behavior within the intake manifold which may help to determine the fuel supply specifications in a multi-point injection system.
X