Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Road Load Data Acquisition using Full Vehicle Simulations

2013-04-08
2013-01-1189
The concept of full vehicle simulation has been embraced by the automobile industry as it is an indispensable tool for analyzing vehicles. Vehicle loads traditionally obtained by road load data acquisition such as wheel forces are typically not invariant as they depend on the vehicle that was used for the measurement. Alternatively, virtual road load data acquisition approach has been adopted in industry to derive invariant loads. Analytical loads prior to building hardware prototypes can shorten development cycles and save costs associated with data acquisition. The approach described herein estimate realistic component load histories with sufficient accuracy and reasonable effort using full vehicle simulations. In this study, a multi-body dynamic model of the vehicle was built and simulated over digitized road using ADAMS software, and output responses were correlated to a physical vehicle that was driven on the same road.
Technical Paper

Studies on AC Suction Line Pressure Drop using 1D Modeling

2013-04-08
2013-01-1503
In an automotive air-conditioning (AC) system, the amount of work done by the compressor is also influenced by the suction line which meters the refrigerant flow. Optimizing the AC suction line routing has thus become an important challenge and the plumbing designers are required to come up with innovative packaging solutions. These solutions are required in the early design stages when prototypes are not yet appropriate. In such scenarios, one-dimensional (1D) simulations shall be employed to compute the pressure drop for faster and economical solution. In this paper, an approach of creating a modeling tool for suction line pressure drop prediction is discussed. Using DFSS approach L12 design iterations are created and simulations are carried out using 1D AMESim software. Prototypes are manufactured and tested on HVAC bench calorimeter. AC suction line pressure drop predicted using the 1D modeling co-related well with the test data and the error is less than 5%.
Technical Paper

Shape Recovery Simulation of Flexible Airdam

2013-04-08
2013-01-0166
Airdam is an aerodynamic component in automobile and is designed to reduce the drag and increase fuel efficiency. It is also an important styling component. The front airdam below the bumper is to direct the air flow away from the front tires and towards the underbody, where the drag coefficient becomes less. The flexible airdam is made of Santoprene™ - thermoplastic vulcanizates (TPV), which belongs to thermoplastic elastomer (TPE) family. When a vehicle is parked over a parking block, the flexible airdam will be under strain subjected to bending load from the parking block. If the airdam is kept under constant strain for a certain period, a set will occur and the force will decay over a period of time. Due to the force decay, the stress will reduce and this behavior is called as stress relaxation.
Technical Paper

Optimization of the Underbody Layout of a Small Van for Better Aerodynamics Using Digital Simulation

2014-04-01
2014-01-0574
The Wuling Rongguang is a small van which uses a mid-engine layout where the engine is located underneath the floor panel in-between front and rear wheels. A particular challenge for this kind of layout is the protection of the engine against soiling. Typical protective measures consist of large mudguards in combination with an engine cover. While needed for soiling protection, these parts can have a strongly adverse effect on aerodynamic drag. This paper describes process and the results of the aerodynamic optimization of the underbody of the Wuling Rongguang. Because design changes had to be evaluated for aerodynamics performance as well as for their effect on the soiling, a digital approach was used which allowed to do the soiling analysis as a post processing to the flow simulation. As a first step, a baseline model was built and analyzed. This included the development of a soiling model taking into account wheel spray and splashing effects.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Journal Article

Optimization of Active Grille Shutters Operation for Improved Fuel Economy

2017-03-28
2017-01-1513
The airflow into the engine bay of a passenger car is used for cooling down essential components of the vehicle, such as powertrain, air-conditioning compressor, intake charge air, batteries, and brake systems, before it returns back to the external flow. When the intake ram pressure becomes high enough to supply surplus cooling air flow, this flow can be actively regulated by using arrays of grille shutters, namely active grille shutters (AGS), in order to reduce the drag penalty due to excessive cooling. In this study, the operation of AGS for a generic SUV-type model vehicle is optimized for improved fuel economy on a highway drive cycle (part of SFTP-US06) by using surrogate models. Both vehicle aerodynamic power consumption and under-hood cooling performance are assessed by using PowerFLOW, a high-fidelity flow solver that is fully coupled with powertrain heat exchanger models.
Technical Paper

Numerical Simulation of Unsteady Natural Convection in a Simplified Engine Bay Enclosure under Soak Conditions

2014-04-01
2014-01-0651
At the onset of soak, air and surface temperatures in an engine bay enclosure are elevated since temperature of heat sources are high while convective cooling is sharply reduced as a result of airflow being shut off from the inlet grilles of the vehicle leading to temperature spikes. Accurate simulation of this important thermal and flow regime that is natural convection driven, highly transient and complex is therefore very important. In this investigation, we simulate flow in the engine bay at the onset of soak with fixed thermal boundary conditions where the geometries representing the engine bay and components are simplified. Good agreement was observed with detailed experimental data available in references for both velocities and temperatures.
Technical Paper

Noise Contribution Analysis at Suspension Interfaces Using Different Force Identification Techniques

2011-05-17
2011-01-1600
Road-tire induced vibrations are in many vehicles determining the interior noise levels in (semi-) constant speed driving. The understanding of the noise contributions of different connections of the suspension systems to the vehicle is essential in improvement of the isolation capabilities of the suspension- and body-structure. To identify these noise contributions, both the forces acting at the suspension-to-body connections points and the vibro-acoustic transfers from the connection points to the interior microphones are required. In this paper different approaches to identify the forces are compared for their applicability to road noise analysis. First step for the force identification is the full vehicle operational measurement in which target responses (interior noise) and indicator responses (accelerations or other) are measured.
Technical Paper

Multi-Objectives Optimization of Fastener Location in a Bolted Joint

2013-04-08
2013-01-0966
During component development of multiple fastener bolted joints, it was observed that one or two fasteners had a higher potential to slip when compared to other fasteners in the same joint. This condition indicated that uneven distribution of the service loads was occurring in the bolted joints. The need for an optimization tool was identified that would take into account various objectives and constraints based on real world design conditions. The objective of this paper is to present a method developed to determine optimized multiple fastener locations within a bolted joint for achieving evenly distributed loads across the fasteners during multiple load events. The method integrates finite element analysis (FEA) with optimization software using multi-objective optimization algorithms. Multiple constraints were also considered for the optimization analysis. In use, each bolted joint is subjected to multiple service load conditions (load cases).
Technical Paper

Monotonic and Fatigue Behavior of Magnesium Extrusion Alloy AM30: An International Benchmark Test in the “Magnesium Front End Research and Development Project”

2010-04-12
2010-01-0407
Magnesium alloys are the lightest structural metal and recently attention has been focused on using them for structural automotive components. Fatigue and durability studies are essential in the design of these load-bearing components. In 2006, a large multinational research effort, Magnesium Front End Research & Development (MFERD), was launched involving researchers from Canada, China and the US. The MFERD project is intended to investigate the applicability of Mg alloys as lightweight materials for automotive body structures. The participating institutions in fatigue and durability studies were the University of Waterloo and Ryerson University from Canada, Institute of Metal Research (IMR) from China, and Mississippi State University, Westmorland, General Motors Corporation, Ford Motor Company and Chrysler Group LLC from the United States.
Technical Paper

Integrating Manufacturing Pre-Stress in FEA Based Road Load Fatigue Analysis

2013-04-08
2013-01-1204
Most manufacturing and assembly processes like stamping, clamping, interference fits introduce a pre-stress condition in components or assemblies. Very often these stresses are high enough and alter the mean stress state resulting in significant effect on fatigue life performance and thus cannot be ignored. If the pre-stress is compressive, it will increase the allowable stress range and improve fatigue life performance; on the other hand if these stresses are tensile, they will decrease the allowable stress range resulting in a degradation of fatigue life. At times it becomes critical to effectively introduce the pre-stress condition in order to accurately represent the stress state in an FEA based durability simulation. Accounting for the pre-stress state in FEA based constant amplitude loading fatigue life simulation is relatively straight forward, but when it comes to random variable amplitude multi-channel loads simulation, the problem becomes more complicated.
Technical Paper

Further CFD Studies for Detailed Tires using Aerodynamics Simulation with Rolling Road Conditions

2010-04-12
2010-01-0756
In an environment of tougher engineering constraints to deliver tomorrow's aerodynamic vehicles, evaluation of aerodynamics early in the design process using digital prototypes and simulation tools has become more crucial for meeting cost and performance targets. Engineering needs have increased the demands on simulation software to provide robust solutions under a range of operating conditions and with detailed geometry representation. In this paper the application of simulation tools to wheel design in on-road operating conditions is explored. Typically, wheel and wheel cover design is investigated using physical tests very late in the development process, and requires costly testing of many sets of wheels in an on-road testing environment (either coast-down testing or a moving-ground wind-tunnel).
Journal Article

Fatigue Life Predictions under General Multiaxial Loading Based on Simple Material Properties

2011-04-12
2011-01-0487
A procedure for fatigue life estimation of components and structures under variable amplitude multiaxial loadings based on simple and commonly available material properties is presented. Different aspects of the analysis consisting of load cycle counting method, plasticity model, fatigue damage parameter, and cumulative damage rule are presented. The only needed material properties for the proposed procedure are hardness and monotonic and axial cyclic deformation properties (HB, K, n, K′ and n′). Rainflow cycle counting method is used for identifying number of cycles. Non-proportional cyclic hardening is estimated from monotonic and axial cyclic deformation behaviors. A critical plane approach is used to quantify fatigue damage under variable amplitude multiaxial loading, where only material hardness is used to estimate the fatigue curve, and where the needed deformation response is estimated based on Tanaka's non-proportionality parameter.
Journal Article

Evaluation of Non-Uniform Upstream Flow Effects on Vehicle Aerodynamics

2014-04-01
2014-01-0614
Historically vehicle aerodynamic development has focused on testing under idealised conditions; maintaining measurement repeatability and precision in the assessment of design changes. However, the on-road environment is far from ideal: natural wind is unsteady, roadside obstacles provide additional flow disturbance, as does the presence of other vehicles. On-road measurements indicate that turbulence with amplitudes up to 10% of vehicle speed and dominant length scales spanning typical vehicle sizes (1-10 m) occurs frequently. These non-uniform flow conditions may change vehicle aerodynamic behaviour by interfering with separated turbulent flow structures and increasing local turbulence levels. Incremental improvements made to drag and lift during vehicle development may also be affected by this non-ideal flow environment. On-road measurements show that the shape of the observed turbulence spectrum can be generalised, enabling the definition of representative wind conditions.
Technical Paper

Drive Cycle Simulation of A Tiered Cooling Pack Using Non-Uniform Boundary Conditions

2014-04-01
2014-01-0654
In a tiered cooling pack, the airflow through the individual heat exchangers is determined by the package and aperture lay out. Each heat exchanger rejects heat as a function of the internal coolant flows, the cooling airflow and the air temperature. In a typical automotive cooling pack, the cooling airflow will be non-uniform in velocity and temperature due to fans, aperture geometry, exterior flows, heat exchangers and recirculation. In a drive cycle, these boundary conditions will change with vehicle operating conditions like vehicle speed, engine speed, ambient temperature, and altitude. These non-uniform conditions on the cooling pack can lead to significant errors when uniform boundary conditions are assumed in a transient simulation. This error is commonly corrected using vehicle test data. A predictive approach, which eliminates the need for correlation vehicle testing, is presented.
Technical Paper

Die Wear Estimation in Automotive Sheet Metal Stamping

2013-04-08
2013-01-1171
Automotive industry's migration to usage of HSS (High Strength Steels), AHSS (Advance High Strength Steels) from conventional steels for their low weight and high strength properties has had its significant effects on die wear. The unpredictability of die wear can pose manufacturing issues, for example, undesirable tool life. Hence die wear has been gaining immense attention and lot of research work has been carried out to provide a die wear prediction method. This paper focuses on the method of estimating wear mathematically based on the mechanics behind die wear phenomenon. This is also an effort to study wear on die for an automotive component in critical areas for which the amount of wear are calculated. This study is further to be correlated with production data from die maintenance record, explicit measurement of die wear, etc., to validate the estimation.
Journal Article

Development of Corrosion Testing Protocols for Magnesium Alloys and Magnesium-Intensive Subassemblies

2013-04-08
2013-01-0978
Corrosion tendency is one of the major inhibitors for increased use of magnesium alloys in automotive structural applications. Moreover, systematic or standardized methods for evaluation of both general and galvanic corrosion of magnesium alloys, either as individual components or eventually as entire subassemblies, remains elusive, and receives little attention from professional and standardization bodies. This work reports outcomes from an effort underway within the U.S. Automotive Materials Partnership - ‘USAMP’ (Chrysler, Ford and GM) directed toward enabling technologies and knowledge base for the design and fabrication of magnesium-intensive subassemblies intended for automotive “front end” applications. In particular, subassemblies consisting of three different grades of magnesium (die cast, sheet and extrusion) and receiving a typical corrosion protective coating were subjected to cyclic corrosion tests as employed by each OEM in the consortium.
Journal Article

Determination of Weld Nugget Size Using an Inverse Engineering Technique

2013-04-08
2013-01-1374
In today's light-weight vehicles, the strength of spot welds plays an important role in overall product integrity, reliability and customer satisfaction. Naturally, there is a need for a quick and reliable technique to inspect the quality of the welds. In the past, the primary quality control tests for detecting weld defects are the destructive chisel test and peel test [1]. The non-destructive evaluation (NDE) method currently used in industry is based on ultrasonic inspection [2, 3, 4]. The technique is not always successful in evaluating the nugget size, nor is it effective in detecting the so-called “cold” or “stick” welds. Therefore, it is necessary to develop a precise and reliable noncontact NDE method for spot welds. There have been numerous studies in predicting the weld nugget size by considering the spot-weld process [5, 6].
Technical Paper

Determination of Vehicle Resistance Curve in Engine Cooling System Design

2010-04-12
2010-01-0933
A process to create a vehicle resistance curve based on airflow predictions using Computational Fluid Dynamics (CFD) simulation technique is presented. 1-dimensional engine cooling system simulation tool KULI is used to compute the coefficients of vehicle resistance curve. A full factorial Design of Experiment (DOE) established the relationship between the coefficients and the sum of absolute difference between KULI and CFD predictions. The NLPQL optimization routine is used to accurately predict the coefficients so that sum of absolute difference between KULI and CFD predictions is minimized.
Journal Article

Comparison of Austempering and Quench-and-Tempering Processes for Carburized Automotive Steels

2013-04-08
2013-01-0173
Carburized parts often see use in powertrain components for the automotive industry. These parts are commonly quenched and tempered after the carburizing process. The present study compared the austempering heat treatment to the traditional quench-and-temper process for carburized parts. Samples were produced from SAE 8620, 4320, and 8822 steels and heat treated across a range of conditions for austempering and for quench-and-tempering. Distortion was examined through the use of Navy C-Ring samples. Microstructure, hardness, and Charpy toughness were also examined. X-ray diffraction was used to compare the residual stress found in the case of the components after the quench-and-temper and the austempering heat treatments. Austempering samples showed less distortion and higher compressive residual stresses, while maintaining comparable hardness values in both case and core. Toughness measurements were also comparable between both processes.
X