Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Technical Paper

Vehicle Body Panel Thermal Buckling Resistance Analysis

2014-04-01
2014-01-0926
This paper discusses CAE simulation methods to predict the thermal induced buckling issues when vehicle body panels are subjected to the elevated temperature in e-coat oven. Both linear buckling analysis and implicit quasi-static analysis are discussed and studied using a quarter cylinder shell as an example. The linear buckling analysis could produce quick but non-conservative buckling temperature. With considering nonlinearity, implicit quasi-static analysis could predict a relative conservative critical temperature. In addition, the permanent deformations could be obtained to judge if the panel remains visible dent due to the buckling. Finally these two approaches have been compared to thermal bucking behavior of a panel on a vehicle going through thermal cycle of e-coat oven with the excellent agreement on its initial design and issue fix design. In conclusion, the linear buckling analysis could be used for quick thermal buckling evaluation and comparison on a series of proposals.
Technical Paper

Using High-Fidelity Multibody Vehicle Models in Real-Time Simulations

2012-04-16
2012-01-0927
Digital or virtual prototyping by means of a multibody simulation model (MBS) is a standard part of the automotive design process. A high-fidelity model is built and often correlated against test data to increase its accuracy. Once built the MBS model can then be used for high fidelity analysis in ride comfort, handling as well as durability. Next to the MBS model, current industry practice is to develop a reduced degree of freedom model for the design and validation of control or intelligent systems. The models used in the control system design are required to execute in hardware-in-the-loop (HIL) simulations where it is necessary to run real-time. The reason for the creation of the reduced degree of freedom models so far has been that the high-fidelity or off-line model does not execute fast enough to be used in an HIL simulation.
Technical Paper

Updating of Dynamic Finite Element Models Based on Experimental Receptances and the Reduced Analytical Dynamic Stiffness Matrix

1995-05-01
951247
This paper presents a model updating method based on experimental receptances. The presented method minimises the so called ‘indirect receptance difference’. First, the reduced analytical dynamic stiffness matrix is expressed as an approximate, linearised function of the updating parameters. In a numerically stable, iterative procedure, this reduced analytical dynamic stiffness matrix is changed in such a way that the analytical receptances match the experimental receptances at the updating frequencies. The updating frequencies are a set of selected frequency points in the frequency range of interest. Some considerations about an optimal selection of the updating frequencies are given. Finally, a mixed static-dynamic reduction scheme is discussed. Dynamic reduction of the analytical dynamic stiffness matrix at each updating frequency is physically exact, but it involves a great computational effort.
Technical Paper

Uncertainty-Based Design in Automotive and Aerospace Engineering

2007-04-16
2007-01-0355
While CAE methods allow improving nominal product design using virtual prototypes, uncertainty and variability in properties and manufacturing processes lead to scatter in actual performances. Uncertainty must hence be incorporated in the CAE process to guarantee the robustness and reliability of the design. This paper presents an overview of uncertainty-based design in automotive and aerospace engineering. Fuzzy methods take uncertainty into account, whereas reliability analysis and a reliability-based design optimization framework can deal with variability. Key enabling technologies to alleviate the computational burden, such as workflow automation, substructuring and design of experiments, are discussed, and industrial applications are presented.
Journal Article

Transmission Torque Converter Arc Spring Damper Dynamic Characteristics for Driveline Torsional Vibration Evaluation

2013-04-08
2013-01-1483
Torsional vibration dampers are used in automatic and manual transmissions to provide passenger comfort and reduce damage to transmission & driveline components from engine torsionals. This paper will introduce a systematic method to model a torque converter (TC) arc spring damper system using Simdrive software. Arc spring design parameters, dynamometer (dyno) setup, and complete powertrain/driveline system modeling and simulation are presented. Through arc spring dynamometer setup subsystem modeling, the static and dynamic stiffness and hysteresis under different engine loads and engine speeds can be obtained. The arc spring subsystem model can be embedded into a complete powertrain/driveline model from engine to wheels. Such a model can be used to perform the torsional analysis and get the torsional response at any location within the powertrain/driveline system. The new methodology enables evaluation of the TC damper design changes to meet the requirements.
Journal Article

Transient Thermal Analysis of Diesel Fuel Systems

2012-04-16
2012-01-1049
In this paper, a transient thermal analysis model for Diesel fuel systems is presented. The purpose of this work is to determine the fuel temperature at various locations along the system, especially inside the tank and at the returned fuel inlet to the tank. Due to the fact that the fuel level is continuously changing during any driving condition, the fuel mass inside the tank is also continuously changing. Consequently, the fuel temperature will change even under steady driving or idle conditions, therefore, this problem should be analyzed using transient thermal analysis models. Effective thermal management requires controlling the surface temperature of the fuel tank, fuel lines and the fuel temperature at the fuel return line as well as inside the tank [1, 2]. Based on the thermal analysis results, it is possible to determine the major source of heat input at several locations of the fuel system.
Technical Paper

Tonal Metrics in the Presence of Masking Noise and Correlation to Subjective Assessment

2014-04-01
2014-01-0892
As the demand for Sound Quality improvements in vehicles continues to grow, robust analysis methods must be established to clearly represent end-user perception. For vehicle sounds which are tonal by nature, such as transmission or axle whine, the common practice of many vehicle manufacturers and suppliers is to subjectively rate the performance of a given part for acceptance on a scale of one to ten. The polar opposite of this is to measure data and use the peak of the fundamental or harmonic orders as an objective assessment. Both of these quantifications are problematic in that the former is purely subjective and the latter does not account for the presence of masking noise which has a profound impact on a driver's assessment of such noises. This paper presents the methodology and results of a study in which tonal noises in the presence of various level of masking noise were presented to a group of jurors in a controlled environment.
Technical Paper

Time-domain Transfer Path Analysis for Transient Phenomena Applied to Tip-in/Tip-out (Shock & Jerk)

2012-06-13
2012-01-1545
Tip-in/Tip-out of the accelerator pedal generates transient torque oscillations in the driveline. These oscillations may be amplified by P/T, suspension and body modes and will eventually be sensible at the receiver side in the vehicle, for example at the seat or at the steering-wheel. The forces that are active during this transient excitation are influenced by non-linear effects in both the suspension and the power train mounts. In order to understand the contribution of each of these forces to the total interior target response (e.g. seat rail vibration) a detailed investigation is performed. Traditional force identification methods are not suitable for low-frequent, transient phenomena like tip-in/tip-out. Mount stiffness method can not be used because of non-linear effects in the P/T and suspension mounts. Application of matrix inversion method based on trimmed body vibration transfer functions is not possible due to numerical condition problems.
Journal Article

Thermal Map of an IC Engine via Conjugate Heat Transfer: Validation and Test Data Correlation

2014-04-01
2014-01-1180
Accurate numerical prediction of an engine thermal map at a wide range of engine operating conditions can help tune engine performance parameters at an early development stage. This study documents the correlation of an engine thermal simulation using the conjugate heat transfer (CHT) methodology with thermocouple data from an engine operating in a dynamometer and a vehicle drive cell. Three different operating conditions are matched with the simulation data. Temperatures predicted by simulation at specific sections, both at the intake and the exhaust sides of the engine are compared with the measured temperatures in the same location on the operating engine.
Technical Paper

The Impact of Vehicle Front End Design on AC Performance

2013-04-08
2013-01-0859
Vehicle front end air flow management affects many aspects of vehicle aero/thermal performances. The HVAC system capacity is greatly driven by the airflow and the air temperature received at the condenser. In this paper, front end design practices are investigated using computer simulation and full vehicle test to evaluate their effects on AC system performance. A full vehicle 3D CFD model is developed and used to predict the airflow and temperature in underhood and around the vehicle body, and specifically the conditions entering the condenser. The condenser inlet airflow and temperature profiles from 3D CFD model are then used as inputs for the 1D AC system model. The 1D AC system model, which includes condenser, compressor, evaporator and TXV (Thermal eXpansion Valve), is developed to observe the critical AC performance indicators such as panel out air temperature and compressor head pressure.
Journal Article

The Damage Operator Approach: Fatigue, Creep and Viscoplasticity Modeling in Thermo-Mechanical Fatigue

2011-04-12
2011-01-0485
In the last decades the development time of vehicles has been drastically reduced due to the application of advanced numerical and experimental methods. Specifications concerning durability and other functional attributes for every new model improve for every vehicle. In particular, for machines and components under variable multiaxial loading, fatigue evaluation is one of the most important steps in the design process. Appropriate material testing and simulation is the key to efficient life prediction. However, the life of automotive components, power plants and other high-temperature facilities depends mostly on thermo-mechanical fatigue (TMF). This is due to the normally variable service conditions, which contain the phases of startup, full load, partial load and shut-down.
Technical Paper

Synthesis of Drive-by Noise Based on Numerically Evaluated Source-Receiver Transfer Functions Employing the FMBEM

2011-05-17
2011-01-1610
Prediction of the drive-by noise level in the early design stage of an automotive vehicle is feasible if the source signatures and source-receiver transfer functions may be determined from simulations based on the available CAD/CAE models. This paper reports on the performance of a drive-by noise synthesis procedure in which the transfer functions are numerically evaluated by employing the Fast Multipole Boundary Element Method (FMBEM). The proposed synthesis procedure first computes the steady-state receiver contributions of the sources as appearing from a number of vehicle positions along the drive path. In a second step, these contributions are then combined into a single transient signal from a moving vehicle for each source-receiver pair by means of a travel time correction.
Technical Paper

Studies on AC Suction Line Pressure Drop using 1D Modeling

2013-04-08
2013-01-1503
In an automotive air-conditioning (AC) system, the amount of work done by the compressor is also influenced by the suction line which meters the refrigerant flow. Optimizing the AC suction line routing has thus become an important challenge and the plumbing designers are required to come up with innovative packaging solutions. These solutions are required in the early design stages when prototypes are not yet appropriate. In such scenarios, one-dimensional (1D) simulations shall be employed to compute the pressure drop for faster and economical solution. In this paper, an approach of creating a modeling tool for suction line pressure drop prediction is discussed. Using DFSS approach L12 design iterations are created and simulations are carried out using 1D AMESim software. Prototypes are manufactured and tested on HVAC bench calorimeter. AC suction line pressure drop predicted using the 1D modeling co-related well with the test data and the error is less than 5%.
Technical Paper

Structural Modelling of Car Panels Using Holographic Modal Analysis

1999-05-17
1999-01-1849
In order to optimise the vibro-acoustic behaviour of panel-like structures in a more systematic way, accurate structural models are needed. However, at the frequencies of relevance to the vibro-acoustic problem, the mode shapes are very complex, requiring a high spatial resolution in the measurement procedure. The large number of required transducers and their mass loading effects limit the applicability of accelerometer testing. In recent years, optical measuring methods have been proposed. Direct electronic (ESPI) imaging, using strobed continuous laser illumination, or more recently, pulsed laser illumination, have lately created the possibility to bring the holographic testing approach to the level of industrial applicability for modal analysis procedures. The present paper discusses the various critical elements of a holographic ESPI modal testing system.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Technical Paper

Sound Quality Equivalent Modeling for Virtual Car Sound Synthesis

2001-04-30
2001-01-1540
The pressure on development cycles in the automotive industry forces the acoustical engineers to create awareness of sound quality in the early stages of development, perhaps even before a physical prototype is available. Currently, designers have few tools to help them listen to their “virtual” models. For the design of a synthesis platform of in-vehicle binaural sound, the sound should be modeled with almost identical sound quality perception. A concept is presented where the total sound of a vehicle is split in a number of components, each with its own sound characteristics. These characteristics are described in a signal model that allows the analysis of an existing sound into a limited number of signal components: orders-frequency spectra, time envelopes and time recordings.
Technical Paper

Smart Meshing Template Process with CAD/CAE Link

2013-04-08
2013-01-0637
The benefits of utilizing virtual engineering include not only shortened product development time and reduced reliance on expensive physical testing, but also the opportunities for greater standardization to support higher product quality. This paper describes a project for building a smart meshing template with a CAD/CAE link. The objective of the project is to optimize the utilization of CAD software and CAE preprocessing software capabilities. The deliverable of the project is a cylinder head mesh template which meets all the cylinder head durability simulation meshing requirements, and which links to CAD/CAE software. Special surface areas identified are built into the cylinder head CAD model design. By using one of the features in CAD software, all the special surfaces can be automatically updated throughout the design process.
Technical Paper

Simulating Acoustic Engine Performance Over a Broad Frequency Range

2011-01-19
2011-26-0019
Acoustic performance of vehicle engines is a real challenge for powertrain design engineers. Quiet engines are required to reduce noise pollution and satisfy pass-by noise regulations, but also to improve the driving comfort. Simulation techniques such as the Boundary Element Method (BEM) have already been available for some time and allow predicting the vibro-acoustic response of engines. Although the accuracy of these simulation techniques has been proven, a challenge still remains in the required computation time. Given the large amount of speeds for a full engine run-up and the need to cover a large frequency range, computation times are significant, which limits the possibility to perform many design iterations to optimize the system. In 2001, Acoustic Transfer Vectors (ATV) [1] have been presented to adequately deal with multiple rpm. The ATV provide the acoustic response for unit surface velocities and are therefore independent from the engine's actual surface vibrations.
Technical Paper

Simplified Approach of Chassis Frame Optimization for Durability Performance

2014-04-01
2014-01-0399
In recent trend, there is a huge demand for lightweight chassis frame, which improves fuel efficiency and reduces cost of the vehicle. Stiffness based optimization process is simple and straightforward while durability (life) based optimizations are relatively complex, time consuming due to a two-step (Stress then life) virtual engineering process and complicated loading history. However, durability performances are critical in chassis design, so a process of optimization with simplified approach has been developed. This study talks about the process of chassis frame weight optimization without affecting current durability performance where complex durability load cases are converted to equivalent static loadcases and life targets are cascaded down to simple stress target. Sheet metal gauges and lightening holes are the parameters for optimization studies. The optimization design space is constrained to chassis unique parts.
X