Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wheel Joint Analytical System Approach to Evaluate Brake Rotor Mounted LRO Sensitivity Effects

2007-10-07
2007-01-3947
Many different studies have been performed to understand brake roughness, and in particular how brake rotor Disc Thickness Variation (DTV) is generated. The intent of this paper is to analytically explore through non- linear finite element modeling methods the effects of wheel joint variables on brake rotor mounted Lateral RunOut (LRO). The phenomenon of LRO is believed to be a primary contributor to DTV generation and resulting brake roughness. CAE analyses were conducted in non-linear contact mechanics in which real contacts between components exist. Various joint designs were simulated to compare rotor LRO and coning. Several parameters inherent to the design of wheel joints were varied and studied. A comparative approach was used to develop specific design recommendations for LRO reductions.
Technical Paper

Validity of Low Ventilation for Accident Processing with Hydrogen Leakage from Hydrogen-Fuelled Vehicle

2013-04-08
2013-01-0211
Appropriate emergency response information is required for first responder before hydrogen fuel cell vehicles will become widespread. This paper investigates experimentally the hydrogen dispersion in the vicinity of a vehicle which accidentally releases hydrogen horizontally with a single volumetric flow of 2000 NL/min in the under-floor section while varying cross and frontal wind effects. This hydrogen flow rate represents normally a full throttle power condition. Forced wind was about maximum 2 m/s. The results indicated that the windward side of the vehicle was safe but that there were chiefly two areas posing risks of fire by hydrogen ignition. One was the leeward side of the vehicle's underbody where a larger region of flammable hydrogen dispersion existed in light wind than in windless conditions. The other was the area around the hydrogen leakage point where most of the leaked hydrogen remained undiffused in an environment with a wind of no stronger than 2 m/s.
Journal Article

Validation of the Localized Fire Test Method for On-Board Hydrogen Storage Systems

2014-04-01
2014-01-0421
The localized fire test provided in the Global Technical Regulation for Hydrogen Fuel Cell Vehicles gives two separate test methods: the ‘generic installation test - Method 1′ and the ‘specific vehicle installation test - Method 2′. Vehicle manufacturers are required to apply either of the two methods. Focused on Method 2, the present study was conducted to determine the characteristics and validity of Method 2. Test results under identical burner flame temperature conditions and the effects of cylinder protection covers made of different materials were compared between Method 1 and Method 2.
Technical Paper

Using Triaxial Angular Rate Sensor and Accelerometer to Determine Spatial Orientation and Position in Impact Tests

2009-04-20
2009-01-0055
A data processing algorithm is presented for determining the spatial orientation and position of a rigid body in impact tests based on an instrumentation scheme consisting of a triaxial angular rate sensor and a trialaxial linear accelerometer. The algorithm adopts the unit quaternion as the main parameterized representation of the spatial orientation, and calculates its time history by solving an ordinary differential equation with the angular rate sensor reading as the input. Two supplemental representations, the Euler angles and the direction cosine matrix, are also used in this work, which provide an intuitive description of the orientation, and convenience in transforming the linear accelerometer output in the instrumentation frame to the global frame. The algorithm has been implemented as a computer program, and a set of example impact tests are included to demonstrate its application.
Technical Paper

Unregulated Emissions Evaluation of Gasoline Combustion Systems (Lean Burn / Stoichiometric DISI and MPI), State of the Art Diesel Aftertreatment Technologies (DPF, urea-SCR and DOC), and Fuel Qualities Effects (EtOH, ETBE, Aromatics and FAME)

2007-10-29
2007-01-4082
In order to clarify future automobile technologies and fuel qualities to improve air quality, second phase of Japan Clean Air Program (JCAPII) had been conducted from 2002 to 2007. Predicting improvement in air quality that might be attained by introducing new emission control technologies and determining fuel qualities required for the technologies is one of the main issues of this program. Unregulated material WG of JCAPII had studied unregulated emissions from gasoline and diesel engines. Eight gaseous hydrocarbons (HC), four Aldehydes and three polycyclic aromatic hydrocarbons (PAHs) were evaluated as unregulated emissions. Specifically, emissions of the following components were measured: 1,3-Butadiene, Benzene, Toluene, Xylene, Ethylbenzene, 1,3,5-Trimethyl-benzene, n-Hexane, Styrene as gaseous HCs, Formaldehyde, Acetaldehyde, Acrolein, Benzaldehyde as Aldehydes, and Benzo(a)pyrene, Benzo(b)fluoranthene, Benzo(k)fluoranthene as PAHs.
Technical Paper

Truck Braking Standards and Regulations in Japan

1989-02-01
890867
This paper introduces the Japanese standards and regulations of automobiles with brakes as the central subject and clarifies the difference from those of Europe and USA by comparison. Further, this paper describes not only the application status of the standards and regulations in Japan but also the features of structure and performance of Japanese trucks that are designed and produced under such standards and regulations. It can be said that the Japanese trucks are comparatively simple in structure but are in a level equal to or higher than European and USA automobiles in respect of performance. Also in respect of the international harmonization, the internationalization of standards is being conducted in Japan on the basis of ISO and the internationalization for regulations is considered to be under preparation.
Technical Paper

Transient One-Dimensional Thermal Analysis of Automotive Components for Determination of Thermal Protection Requirements

2008-04-14
2008-01-0733
During initial phases of vehicle development process, it is usually required to understand the temperature profile for all components. It is usually more effective and less costly if the thermal issues are determined and addressed before actual vehicles are built. Computational Fluid Dynamics (CFD) analysis tools are typically used for thermal management of the vehicle environment. However, for transient thermal analysis problems, running a full CFD requires solving the mass, momentum, and energy equations. This typically requires a lengthy computation time and extensive computer resources. The problem becomes more challenging when trying to conduct CFD analysis for several design iterations and for different duty cycles that may be of a transient nature. Therefore, the application of one-dimensional analysis early in the development phase can help point out the areas of prime concern.
Technical Paper

Transient Internal Nozzle Flow in Transparent Multi-Hole Diesel Injector

2020-04-14
2020-01-0830
An accurate prediction of internal nozzle flow in fuel injector offers the potential to improve predictions of spray computational fluid dynamics (CFD) in an engine, providing a coupled internal-external calculation or by defining better rate of injection (ROI) profile and spray angle information for Lagrangian parcel computations. Previous research has addressed experiments and computations in transparent nozzles, but less is known about realistic multi-hole diesel injectors compared to single axial-hole fuel injectors. In this study, the transient injector opening and closing is characterized using a transparent multi-hole diesel injector, and compared to that of a single axial hole nozzle (ECN Spray D shape). A real-size five-hole acrylic transparent nozzle was mounted in a high-pressure, constant-flow chamber. Internal nozzle phenomena such as cavitation and gas exchange were visualized by high-speed long-distance microscopy.
Technical Paper

Thermal Behavior in Hydrogen Storage Tank for Fuel Cell Vehicle on Fast Filling

2007-04-16
2007-01-0688
The current hydrogen storage systems for fuel-cell vehicles are mainly a compressed hydrogen storage type, but it is known that the temperature inside the tank commonly increases while the tank is being filled with hydrogen. This study examines filling methods that prevent the temperature from exceeding the designed temperature of the tank. In order to propose a filling method that suppresses the temperature rise inside the tank and achieves filling within a short time, fast-filling tests were conducted on test tanks designed for fast filling of fuel cell vehicles. The detailed influences of the differences in type of tank and filling pressure on the rate of the internal temperature increase were investigated. Thermal responses were measured at various parts inside and outside the tank while varying the filling pressure, type of tank, tank capacity, filling time, and filling pattern, using a test tank that allows multi-point measurement of the internal temperature.
Journal Article

Thermal Analysis of Urea Tank Solution Warm Up for Selective Catalytic Reduction (SCR)

2009-04-20
2009-01-0971
Due to the stringent requirements to reduce the tail pipe emissions of NOx, Selective Catalytic Reduction (SCR) systems are used to remove NOx using ammonia. When a urea solution is injected into the exhaust system, urea will undergo hydrolysis and decomposition reaction that produces ammonia. At the catalyst surface, ammonia will react with the exhaust gases to convert NOx into nitrogen, N2 and water, H2O. One of the challenging problems is to make sure the urea solution is available for the SCR system at cold start conditions. At extreme cold temperatures, the urea solution will begin to freeze at −12°C. At the start up of a vehicle under such low ambient temperatures, a heating system is used to provide the heat required for melting the frozen urea. Therefore, there will be a time lag between the vehicle start up and the availability of urea solution to the SCR system.
Technical Paper

The Visualization and Its Analysis of Combustion Flame in a DI Diesel Engine

1998-02-23
980141
Since in-cylinder flame temperature has a direct effect on an engine's NOx characteristics, these phenomena have been studied in detail in a DI diesel engine using a newly developed method allowing the in-cylinder temperature distribution to be measured by the two color method. The flame light introduced from the visualized combustion chamber of the engine is divided into two colors by filters. The images of combustion phenomena using the two wavelengths are recorded with a framing streak camera which includes a CCD camera. The flame temperature is immediately calculated by a computer using two color images from the CCD camera. A parameter study was then carried out to determine the influence of intake valve number of the engine, and fuel injection rate (pilot injection) on the in-cylinder temperature distribution.
Technical Paper

The Study of Particle Number Reduction Using After-Treatment Systems for a Heavy-Duty Diesel Engine

2004-03-08
2004-01-1423
To reduce ultra fine particle number concentration from a heavy-duty diesel engine, the effects of diesel fuel property and after-treatment systems were studied. The reduction of ultra fine particle number concentration over steady state mode using an 8 liter turbocharged and after-cooled diesel engine was evaluated. PM size distribution was measured by a scanning mobility particle sizer (SMPS). The evaluation used a commercially available current diesel fuel (Sulfur Content: 0.0036 wt%), high sulfur diesel fuel (Sulfur Content: 0.046 wt%) and low sulfur diesel fuel (Sulfur Content: 0.007 wt%). The after-treatment systems were an oxidation catalyst, a wire-mesh type DPF (Diesel Particle Filter) and a wall-flow type catalyzed DPF. The results show that fine particle number concentration is reduced with a low sulfur fuel, an oxidation catalyst, a wire-mesh type DPF (Diesel Particulate Filter) and wall flow type catalyzed DPF, respectively.
Technical Paper

The Study of NOx and PM Reduction Using Urea Selective Catalytic Reduction System for Heavy Duty Diesel Engine

2007-04-16
2007-01-1576
To reduce NOx and Particulate Matter (PM) emissions from a heavy-duty diesel engine, the effects of urea selective catalytic reduction (SCR) systems were studied. Proto type urea SCR system was composed of NO oxidation catalyst, SCR catalyst and ammonia (NH3) reduction catalyst. The NOx reduction performance of urea SCR system was improved by a new zeolite type catalyst and mixer for urea distribution at the steady state operating conditions. NOx and PM reduction performance of the urea SCR system with DPF was evaluated over JE05 mode of Japan. The NOx reduction efficiency of the urea SCR catalyst system was 72% at JE05 mode. The PM reduction efficiency of the urea SCR catalyst system with DPF was 93% at JE05 mode. Several kinds of un-regulated matters were detected including NH3 and N2O leak from the exhaust gas. It is necessary to have further study for detailed measurements for un-regulated emissions from urea solution.
Technical Paper

The Study of NOx Reduction Using Plasma-assisted SCR System for a Heavy Duty Diesel Engine

2011-04-12
2011-01-0310
To reduce NOx emissions from a heavy-duty engine at low exhaust temperature conditions, the plasma-assisted SCR (Selective Catalytic Reduction) system was evaluated. The plasma-assisted SCR system is mainly composed of an ammonia gas supply system and a plasma reactor including a pellet type SCR catalyst. The preliminary test with simulated gases of diesel exhaust showed an improvement in the NOx reduction performance by means of the plasma-assisted SCR system, even below 150°C conditions. Furthermore, NOx reduction ratio was improved up to 77% at 110°C with increase in the catalyst volume. Also NOx emissions from a heavy-duty diesel engine over the transient test mode in Japan (JE05) were reduced by the plasma-assisted SCR system. However, unregulated emissions, e.g., aldehydes, were increased with the plasma environment. This paper reports the advantages and disadvantages of the plasma-assisted SCR system for a heavy-duty diesel engine.
Journal Article

The Effects of Detailed Tire Geometry on Automobile Aerodynamics - a CFD Correlation Study in Static Conditions

2009-04-20
2009-01-0777
A correlation study was performed between static wind tunnel testing and computational fluid dynamics (CFD) for a small hatchback vehicle, with the intent of evaluating a variety of different wheel and tire designs for aerodynamic forces. This was the first step of a broader study to develop a tool for assessing wheel and tire designs with real world (rolling road) conditions. It was discovered that better correlation could be achieved when actual tire scan data was used versus traditional smooth (CAD) tire geometry. This paper details the process involved in achieving the best correlation of the CFD prediction with experimental results, and describes the steps taken to include the most accurate geometry possible, including photogrammetry scans of an actual tire that was tested, and the level of meshing detail utilized to capture the fluid effects of the tire detail.
Technical Paper

Summary report of Japan Clean Air Program diesel and diesel fuel activities

2007-07-23
2007-01-1952
Diesel emissions are significant issue worldwide, and emissions requirements have become so tough that. the application of after-treatment systems is now indispensable in many countries To meet even more stringent future emissions requirements, it has become apparent that the improvement of market fuel quality is essential as well as the development in engine and exhaust after-treatment technology. Japan Clean Air Program II (JCAP II) is being conducted to assess the direction of future technologies through the evaluation of current automobile and fuel technologies and consequently to realize near zero emissions and carbon dioxide (CO2) emission reduction. In this program, effects of fuel properties on the performance of diesel engines and a vehicle equipped with two types of diesel NOx emission after-treatment devices, a Urea-SCR system and a NOx storage reduction (NSR) catalyst system, were examined.
Technical Paper

Study on Exterior Idling Sound Quality Evaluation Method for Diesel Engine Trucks

1999-05-17
1999-01-1739
In diesel engine trucks, the sound quality improvement as well as the noise level reduction is demanded because of their annoying exterior noise. The semantic differential method was applied to evaluate the sound quality of trucks. In order to improve the analytical accuracy, subjects who can evaluate the characteristics of sound quality were statistically selected among all the subjects. Comfortability and powerfulness were extracted as the principal components by using the data of the selected subjects. It has been clarified that the comfortability strongly relates to high frequency element ratio, high frequency level, etc. The powerfulness strongly relates to the Zwicker loudness.
Technical Paper

Study of 2-LEG NOx Storage-Reduction Catalyst System for HD Diesel Engine

2006-04-03
2006-01-0211
A 2-LEG NOx Storage-Reduction (NSR) catalyst system is one of potential after-treatment technology to meet stringent NOx and PM emissions standards as Post New Long Term (Japanese 2009 regulation) and US'10. Concerning NOx reduction using NSR catalyst, a secondary fuel injection is necessary to make fuel-rich exhaust condition during the NOx reduction, and causes its fuel penalty. Since fuel injected in the high-temperature (∼250 degrees Celsius) exhaust instantly reacts with oxygen in common diesel exhaust, the proportion of fuel consumption to reduce the NOx stored on NSR catalyst is relatively small. A 2-LEG NSR catalyst system has the decreasing exhaust flow mechanism during NOx reduction, and the potential to improve the NOx reduction and fuel penalty. Therefore, this paper studies the 2-LEG NSR catalyst system. The after-treatment system consists of NSR catalysts, a secondary fuel injection system, flow controlled valves and a Catalyzed Diesel Particulate Filter (CDPF).
Technical Paper

Stiffness Simulation Techniques and Test Correlations in Automotive Interior Cockpit Systems (IP, Door Trim and Floor Console Assembly)

2014-04-01
2014-01-1025
An automotive cockpit module is a complex assembly, which consists of components and sub-systems. The critical systems in the cockpit module are the instrument panel (IP), the floor console, and door trim assemblies, which consist of many plastic trims. Stiffness is one of the most important parameters for the plastic trims' design, and it should be optimum to meet all the three functional requirements of safety, vibration and durability. This paper presents how the CAE application and various other techniques are used efficiently to predict the stiffness, and the strength of automotive cockpit systems, which will reduce the product development cycle time and cost. The implicit solver is used for the most of the stiffness analysis, and the explicit techniques are used in highly non-linear situations. This paper also shows the correlations of the CAE results and the physical test results, which will give more confidence in product design and reduce the cost of prototype testing.
Technical Paper

Steer-Restoring Torque Controlled Driving Simulator for Developing Steering Road Feel

1991-11-01
912690
A driving simulator system for developing steering road feel has been developed. A new steering gear box or an electronic steering system is installed on the simulator and its road feel and control algorithm are developed according to the characteristics of any vehicle which has been programed into the engineering work-station. The vehicle model programed into the engineering work station runs according to the driver's operations, which are fed through the new steering system to be tested. The steer-restoring torque of the vehicle programed into the engineering work-station is produced by an actuator, and gives the impression through the new system of having been fed back from an actual road.
X