Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Effects of Cellular Shear Bands on Interaction between a Non-pneumatic Tire and Sand

2010-04-12
2010-01-0376
To facilitate the design of a non-pneumatic tire for NASA's new Moon mission, the authors used the Finite Element Method (FEM) to investigate the interaction between soil and non-pneumatic tire made of different cellular shear bands. Cellular shear bands, made of an aluminum alloy (AL7075-T6), are designed to have the same effective shear modulus of 6.5E+6 Pa, which is the shear modulus of an elastomer. The Lebanon sand of New Hampshire is used in the model. This sand has a complete set of material properties in the literature and Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. The tires are treated as deformable bodies, and the authors used the penalty contact algorithm to model the tangential behavior of the contact. The friction between tire and sand is considered by using Coulomb's law. Numerical results show deformation of sand and tire.
Technical Paper

Dynamic Simulation of Interaction between Non-Pneumatic Tire and Sand

2010-04-12
2010-01-0377
In this paper, in support of developing an advanced non-pneumatic lunar tire, a dynamic interaction model between non-pneumatic tire and sand is presented using the Finite Element Method (FEM). This non-pneumatic tire is composed of three major components: a critical shear beam, two inextensible circumferential membranes, and deformable spokes. The non-pneumatic tire made of segmented cylinders is described in detail. The tire is treated as an elastic deformable body with the inertia effect is included. Lebanon sand found in New Hampshire is modeled as because of the availability of a complete set of material properties in the literature. The Drucker-Prager/Cap plasticity constitutive law with hardening is employed to model the sand. Numerical results show contact pressure distribution, distributions of various stresses and strains, deformation of non-pneumatic tire, and deformation of sand.
Technical Paper

Dynamic Impact Simulation of Interaction between Non-Pneumatic Tire and Sand with Obstacle

2011-04-12
2011-01-0184
In this paper, the Finite Element Method (FEM) is used to model and simulate the dynamic interaction between non-pneumatic tire and sand with obstacle to investigate the influence of obstacle on performance of the non-pneumatic tire. The non-pneumatic tire consists of three major components: two inextensible circumferential membranes, a critical shear beam, and a group of deformable spokes. The non-pneumatic tire fabricated of segmented cylinders is illustrated and the FEM model for the tire is given in detail. The tire is treated as an elastic deformable body with the inertia effect included. Lebanon sand found in New Hampshire is used in this simulation because of the availability of a complete set of material properties in the literature. Modified Drucker-Prager/Cap plasticity constitutive law with hardening is utilized to model the sand. The obstacle is represented as an elastic body.
Journal Article

Design of Cellular Shear Bands of a Non-Pneumatic Tire -Investigation of Contact Pressure

2010-04-12
2010-01-0768
In an effort to build a shear band of a lunar rover wheel which operates at lunar surface temperatures (40 to 400K), the design of a metallic cellular shear band is suggested. Six representative honeycombs with aluminum alloy (7075-T6) are tailored to have a shear modulus of 6.5MPa which is a shear modulus of an elastomer by changing cell wall thickness, cell angles, cell heights and cell lengths at meso-scale. The designed cellular solids are used for a ring typed shear band of a wheel structure at macro-scale. A structural performance such as contact pressure at the outer layer of the wheel is investigated with the honeycomb shear bands when a vertical force is applied at the center of the wheel. Cellular Materials Theory (CMT) is used to obtain in-plane effective properties of a honeycomb structure at meso-scale. Finite Element Analysis (FEA) with commercial software ABAQUS is employed to investigate the structural behavior of a wheel at macro-scale.
X