Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Book

The Use of Nano Composites in Automotive Applications

2015-12-18
With their high specific strength and stiffness, composites have the potential to significantly lower the vehicle weight, which can have a dramatic effect on improving fuel efficiency and reducing greenhouse gas emissions. For the past decade or so, composites have been experiencing several transitions, including the transition from micro-scale reinforcement fillers to nano-scale reinforcement fillers, resulting in the nanocomposite. The effectiveness of the nano-sized fillers in composites can be explained by one of their unique geometric properties: the length-to-thickness aspect ratio. Therefore, nano-sized fillers have exceptionally higher reinforcing efficiency than the conventional, large fillers. The effectiveness of the nano-sized fillers in composites is also due to their large surface area and surface energy.
Technical Paper

Saturation Balancing Control for Enhancing Dynamic Stability of Vehicles with Independent Wheel Drives

2011-04-12
2011-01-0982
This paper proposes a new vehicle stability control method that quantifies and uses the level of lateral force saturation on each axle/wheel of a vehicle. The magnitude of the saturation, which can be interpreted as a slip-angle deficiency, is determined from on-line estimated nonlinear tire lateral forces and their linear projections that use estimates of the cornering stiffness. Once known, the saturation levels are employed in a saturation balancing control structure that biases the drive torque to either the front or rear axles/wheels with the goal of minimizing excessive under- or over-steer, thereby stabilizing the vehicle. The method is particularly suited for a vehicle with an independent wheel drive system. Furthermore, the method can be used in conjunction with a direct yaw-moment controller to obtain enhanced stability and responsiveness.
Technical Paper

Roll Stability Control for Torsionally Compliant Vehicles

2010-04-12
2010-01-0102
Rollover prevention is now part of complete vehicle stability control systems for many vehicles. Given that rollover is predominantly associated with vehicles with high centers of gravity, the targeted vehicles for rollover protection include medium and heavy duty commercial vehicles. Unfortunately, the chassis designs of these vehicles are often so compliant in torsion that the ends of the vehicles may have significantly different roll responses at any given time. The potential need to assess and correct for the roll behavior of the front and rear ends of the vehicle is the subject of this paper. Most rollover mitigation research to date has used rigid chassis assumptions in modeling the vehicle. This paper deals with the roll control of vehicles with torsionally flexible chassis based on a yaw-correction system.
Technical Paper

Investigation of the Machining of Titanium Components for Lightweight Vehicles

2010-04-12
2010-01-0022
Due to titanium's excellent strength-to-weight ratio and high corrosion resistance, titanium and its alloys have great potential to reduce energy usage in vehicles through a reduction in vehicle mass. The mass of a road vehicle is directly related to its energy consumption through inertial requirements and tire rolling resistance losses. However, when considering the manufacture of titanium automotive components, the machinability is poor, thus increasing processing cost through a trade-off between extended cycle time (labor cost) or increased tool wear (tooling cost). This fact has classified titanium as a “difficult-to-machine” material and consequently, titanium has been traditionally used for application areas having a comparatively higher end product cost such as in aerospace applications, the automotive racing segment, etc., as opposed to the consumer automotive segment.
Journal Article

Hydrostatic Wheel Drives for Vehicle Stability Control

2010-04-12
2010-01-0105
Hydrostatic (hydraulic hybrid) drives have demonstrated energy efficiency and emissions reduction benefits. This paper investigates the potential of an independent hydrostatic wheel drive system for implementing a traction-based vehicle lateral stability control system. The system allows an upper level vehicle stability controller to produce a desired corrective yaw moment via a differential distribution of torque to the independent wheel motors. In cornering maneuvers that require braking on any one wheel of the vehicle, the motors can be operated as pumps for re-generating energy into an on-board accumulator. This approach avoids or reduces activation of the friction brakes, thereby reducing energy waste as heat in the brake pads and offering potential savings in brake maintenance costs. For this study, a model of a 4×4 hydrostatic independent wheel drive system is constructed in a causal and modular fashion and is coupled to a 7 DOF vehicle handling dynamics model.
Journal Article

Effect of Cab Suspension Configuration and Location on Tractor Semi-Trailer Driver Comfort

2016-09-16
2016-01-9018
It is well known that the ride quality of trucks is much harsher than that of automobiles. Additionally, truck drivers typically drive trucks for much longer duration than automobile drivers. These two factors contribute to the fatigue that a truck driver typically experiences during long haul deliveries. Fatigue reduces driver alertness and increases reaction times, increasing the possibility of an accident. One may conclude that better ride quality contributes to safer operation. The secondary suspensions of a tractor have been an area of particular interest because of the considerable ride comfort improvements they provide. A gap exists in the current engineering domain of an easily configurable high fidelity low computational cost simulation tool to analyze the ride of a tractor semi-trailer. For a preliminary design study, a 15 d.o.f. model of the tractor semi-trailer was developed to simulate in the Matlab/Simulink environment.
Book

Design of Automotive Composites

2014-08-04
Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena. The chapters consist of eleven technical papers selected from the Automotive Composites and other relevant sessions that the editors have been organizing for the SAE International World Congress over the past five years. The book is divided into four sections: o Body Structures o Powertrain Components o Suspension Components o Electrical and Alternative Vehicle Components The composite design examples presented in Design of Automotive Composites come from the major OEMs and top-tier suppliers and are most relevant to the automotive materials challenges currently faced by the industry. Many of the innovative ideas have already been implemented on existing or new model vehicles, although a great deal of innovation is still in the works.
Book

Biocomposites in Automotive Applications

2015-08-13
The automotive sector has taken a keen interest in lightweighting as new required performance standards for fuel economy come into place. This strategy includes parts consolidation, design optimization, and material substitution, with sustainable polymers playing a major role in reducing a vehicle’s weight. Sustainable polymers are largely biodegradable, biocompatible, and sourced from renewable plant and agricultural stocks. A facile way to enhance their properties, so they can indeed replace the ones made from fossil fuels, is by reinforcing them with fibers to make composites. Natural fibers are gaining more acceptance in the industry due to their renewable nature, low cost, low density, low energy consumption, high specific strength and stiffness, CO2 sequestration potential, biodegradability, and less wear imposed on machinery. Biocomposites then become a very feasible way to help address the fuel consumption challenge ahead of us.
Journal Article

A Model-Free Stability Control Design Scheme with Active Steering Actuator Sets

2016-04-05
2016-01-1655
This paper presents the application of a proposed fuzzy inference system as part of a stability control design scheme implemented with active steering actuator sets. The fuzzy inference system is used to detect the level of overseer/understeer at the high level and a speed-adaptive activation module determines whether an active front steering, active rear steering, or active 4 wheel steering is suited to improve vehicle handling stability. The resulting model-free system is capable of minimizing the amount of model calibration during the vehicle stability control development process as well as improving vehicle performance and stability over a wide range of vehicle and road conditions. A simulation study will be presented that evaluates the proposed scheme and compares the effectiveness of active front steer (AFS) and active rear steer (ARS) in enhancing the vehicle performance. Both time and frequency domain results are presented.
Journal Article

A Fuzzy Inference System for Understeer/Oversteer Detection Towards Model-Free Stability Control

2016-04-05
2016-01-1630
In this paper, a soft computing approach to a model-free vehicle stability control (VSC) algorithm is presented. The objective is to create a fuzzy inference system (FIS) that is robust enough to operate in a multitude of vehicle conditions (load, tire wear, alignment), and road conditions while at the same time providing optimal vehicle stability by detecting and minimizing loss of traction. In this approach, an adaptive neuro-fuzzy inference system (ANFIS) is generated using previously collected data to train and optimize the performance of the fuzzy logic VSC algorithm. This paper outlines the FIS detection algorithm and its benefits over a model-based approach. The performance of the FIS-based VSC is evaluated via a co-simulation of MATLAB/Simulink and CarSim model of the vehicle under various road and load conditions. The results showed that the proposed algorithm is capable of accurately indicating unstable vehicle behavior for two different types of vehicles (SUV and Sedan).
X