Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Endurance Testing Apparatus Simulating Wheel Dynamics and Environment on Lunar Terrain

2010-04-12
2010-01-0765
This paper entails the design and development of a NASA testing system used to simulate wheel operation in a lunar environment under different loading conditions. The test system was developed to test the design of advanced nonpneumatic wheels to be used on the NASA All-Terrain Hex-Legged Extra-Terrestrial Explorer (ATHLETE). The ATHLETE, allowing for easy maneuverability around the lunar surface, provides the capability for many research and exploration opportunities on the lunar surface that were not previously possible. Each leg, having six degrees of freedom, allows the ATHLETE to accomplish many tasks not available on other extra-terrestrial exploration platforms. The robotic vehicle is expected to last longer than previous lunar rovers.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
X