Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

What Makes Passengers Uncomfortable In Vehicles Today? An Exploratory Study of Current Factors that May Influence Acceptance of Future Autonomous Vehicles

2023-04-11
2023-01-0675
Autonomous vehicles have the potential to transform lives by providing transportation to a wider range of users. However, with this new method of transportation, user acceptance and comfort are critical for widespread adoption. This exploratory study aims to investigate what makes passengers uncomfortable in existing vehicles to inform the design of future autonomous vehicles. In order to predict what may impact user acceptance for a diverse rider population for future autonomous vehicles, it is important to understand what makes a broad range of passengers uncomfortable today. In this study, interviews were conducted for a total of 75 participants from three diverse groups, including 20 automotive engineering graduate students who are building an autonomous concept vehicle, 21 non-technical adults, and 34 senior citizens. The results revealed both topics which made different groups of passengers uncomfortable as well as how these varied between the groups.
Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Utilizing Neural Networks for Semantic Segmentation on RGB/LiDAR Fused Data for Off-road Autonomous Military Vehicle Perception

2023-04-11
2023-01-0740
Image segmentation has historically been a technique for analyzing terrain for military autonomous vehicles. One of the weaknesses of image segmentation from camera data is that it lacks depth information, and it can be affected by environment lighting. Light detection and ranging (LiDAR) is an emerging technology in image segmentation that is able to estimate distances to the objects it detects. One advantage of LiDAR is the ability to gather accurate distances regardless of day, night, shadows, or glare. This study examines LiDAR and camera image segmentation fusion to improve an advanced driver-assistance systems (ADAS) algorithm for off-road autonomous military vehicles. The volume of points generated by LiDAR provides the vehicle with distance and spatial data surrounding the vehicle.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Traffic Safety Improvement through Evaluation of Driver Behavior – An Initial Step Towards Vehicle Assessment of Human Operators

2023-04-11
2023-01-0569
In the United States and worldwide, 38,824 and 1.35 million people were killed in vehicle crashes during 2020. These statistics are tragic and indicative of an on-going public health crisis centered on automobiles and other ground transportation solutions. Although the long-term US vehicle fatality rate is slowly declining, it continues to be elevated compared to European countries. The introduction of vehicle safety systems and re-designed roadways has improved survivability and driving environment, but driver behavior has not been fully addressed. A non-confrontational approach is the evaluation of driver behavior using onboard sensors and computer algorithms to determine the vehicle’s “mistrust” level of the given operator and the safety of the individual operating the vehicle. This is an inversion of the classic human-machine trust paradigm in which the human evaluates whether the machine can safely operate in an automated fashion.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Journal Article

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

2020-04-14
2020-01-0275
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Teaching Autonomous Vehicles How to Drive under Sensing Exceptions by Human Driving Demonstrations

2017-03-28
2017-01-0070
Autonomous driving technologies can provide better safety, comfort and efficiency for future transportation systems. Most research in this area has mainly been focused on developing sensing and control approaches to achieve various autonomous driving functions. Very little of this research, however, has studied how to efficiently handle sensing exceptions. A simple exception measured by any of the sensors may lead to failures in autonomous driving functions. The autonomous vehicles are then supposed to be sent back to manufacturers for repair, which takes both time and money. This paper introduces an efficient approach to make human drivers able to online teach autonomous vehicles to drive under sensing exceptions. A human-vehicle teaching-and-learning framework for autonomous driving is proposed and the human teaching and vehicle learning processes for handling sensing exceptions in autonomous vehicles are designed in detail.
Technical Paper

Synthesis of Statistically Representative Driving Cycle for Tracked Vehicles

2023-04-11
2023-01-0115
Drive cycles are a core piece of vehicle development testing methodology. The control and calibration of the vehicle is often tuned over drive cycles as they are the best representation of the real-world driving the vehicle will see during deployment. To obtain general performance numerous drive cycles must be generated to ensure final control and calibration avoids overfitting to the specifics of a single drive cycle. When real-world driving cycles are difficult to acquire methods can be used to create statistically similar synthetic drive cycles to avoid the overfitting problem. This subject has been well addressed within the passenger vehicle domain but must be expanded upon for utilization with tracked off-road vehicles. Development of hybrid tracked vehicles has increased this need further. This study shows that turning dynamics have significant influence on the vehicle power demand and on the power demand on each individual track.
Technical Paper

Student Concept Vehicle: Development and Usability of an Innovative Holographic User Interface Concept and a Novel Parking Assistance System Concept

2019-04-02
2019-01-0396
The Deep Orange program is a concept vehicle development program focused on providing hands-on experience in design, engineering, prototyping and production planning as part of students’ two-year MS graduate education. Throughout this project, the team was challenged to create innovative concepts during the ideation phase as part of building the running vehicle. This paper describes the usability studies performed on two of the vehicle concepts that require driver interaction. One concept is a human machine interface (HMI) that uses a holographic companion that can act as a concierge for all functions of the vehicle. After creating a prototype using existing technologies and developing a user interface controlled by hand gestures, a usability study was completed with older adults. The results suggest the input method was not intuitive. Participants demonstrated better performance with tasks using discrete hand motions in comparison to those that required continuous motions.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Technical Paper

Situational Intelligence-Based Vehicle Trajectory Prediction in an Unstructured Off-Road Environment

2023-04-11
2023-01-0860
Autonomous vehicles (AV) are sophisticated systems comprising various sensors, powerful processors, and complex data processing algorithms that navigate autonomously to their respective goals. Out of several functions performed by an AV, one of the most important is developing situational intelligence to predict collision-free future trajectories. As an AV operates in environments consisting of various entities, such as other AVs, human-driven vehicles, and static obstacles, developing situational intelligence will require a collaborative approach. The recent developments in artificial intelligence (AI) and deep learning (DL) relating to AVs have shown that DL-based models can take advantage of information sharing and collaboration to develop such intelligence.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Semantic Segmentation with High Inference Speed in Off-Road Environments

2023-04-11
2023-01-0868
Semantic segmentation is an integral component in many autonomous vehicle systems used for tasks like path identification and scene understanding. Autonomous vehicles must make decisions quickly enough so they can react to their surroundings, therefore, they must be able to segment the environment at high speeds. There has been a fair amount of research on semantic segmentation, but most of this research focuses on achieving higher accuracy, using the mean intersection over union (mIoU) metric rather than higher inference speed. More so, most of these semantic segmentation models are trained and evaluated on urban areas instead of off-road environments. Because of this there is a lack of knowledge in semantic segmentation models for use in off-road unmanned ground vehicles.
Technical Paper

Safety Verification and Navigation for Autonomous Vehicles Based on Signal Temporal Logic Constraints

2023-04-11
2023-01-0113
The software architecture behind modern autonomous vehicles (AV) is becoming more complex steadily. Safety verification is now an imminent task prior to the large-scale deployment of such convoluted models. For safety-critical tasks in navigation, it becomes imperative to perform a verification procedure on the trajectories proposed by the planning algorithm prior to deployment. Signal Temporal Logic (STL) constraints can dictate the safety requirements for an AV. A combination of STL constraints is called a specification. A key difference between STL and other logic constraints is that STL allows us to work on continuous signals. We verify the satisfaction of the STL specifications by calculating the robustness value for each signal within the specification. Higher robustness values indicate a safer system. Model Predictive Control (MPC) is one of the most widely used methods to control the navigation of an AV, with an underlying set of state and input constraints.
Technical Paper

Ride Dynamics and Pavement Loading of Tractor Semi-Trailers on Randomly Rough Roads

2004-10-26
2004-01-2622
An investigation of the vertical dynamics of a tractor semi-trailer traversing a random road profile was conducted. This paper presents the development of a 14 degree-of-freedom (DOF), dynamic ride model of a tractor semi-trailer. It is based on work previously conducted by Vaduri and Law [1] and Law et al [2]. The DOFs include: (a) vertical displacements of each of the five axles, the tractor frame, the engine on its mounts, the cab on its suspension, and the driver's seat; (b) pitch displacements of the trailer with respect to the tractor, the cab, and the rigid tractor frame; and, (c) the first bending or beaming modes of the tractor and trailer frames. The model also incorporates suspension friction, and tire non-uniformities. The simulation of the model is conducted using MATLAB software.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
X