Refine Your Search

Topic

Search Results

Technical Paper

Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems

2003-03-03
2003-01-0272
The introduction of mechatronic components into thermal-mechanical systems provides an opportunity to apply real time control strategies for enhanced engine performance. The traditional automotive thermal management system contains the engine, thermostat, air cooled radiator, and centrifugal pump driven by the crankshaft belt. A servo-motor valve and pump may be inserted into the vehicle's heating/cooling system to regulate the coolant flow with the engine control unit. To study these dual actuators, a scale experimental cooling system has been investigated. This automotive inspired thermal system contains a heater, smart thermostat valve, radiator, and variable speed electric pump. A lumped parameter model has been developed to describe the system's behavioral response and establish the basis for temperature regulation. Real time control algorithms are introduced for the synchronous regulation of the valve and pump.
Technical Paper

Predictive Maintenance of a Ground Vehicle Using Digital Twin Technology

2024-04-09
2024-01-2867
The safety and reliability of ground vehicles is a motivating factor for periodic maintenance which includes fluids, lubrication, cleaning, repairs, and general observation of key subsystems. The scheduling of maintenance activities can occur at different rates such as daily, weekly, or perhaps operating time based on collected historical data and general guidelines. The availability of a digital twin (DT), which offers a virtual representation of the vehicle behavior, enables virtual system simulations for different operating cycles to explore the dynamic behavior. When field operating fleet data can be integrated with the digital twin estimates, then this supplemental information can be combined with the existing maintenance plan to provide a more comprehensive approach. In this paper, a digital twin with a statistical based predictive maintenance strategy is investigated for a wheeled military ground vehicle.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Lazy Parts Indication Method: Application to Automotive Components

2011-04-12
2011-01-0428
A new approach to lightweight engineering of vehicles focuses on identifying and eliminating Lazy Parts through the application of the Lazy Parts Indication Method (LPIM). In this context, Lazy Parts are defined as components that have the potential for mass reduction for a number of reasons discussed in previous literature. The focus of this research is to apply the LPIM to an automotive component, identify potential mass savings, and redesign the component to address the laziness and begin to validate the LPIM as well at the estimated mass savings. A generator mounting bracket for a vehicle is analyzed using the LPIM and redesigned. The application of the LPIM to the generator mounting bracket predicted an estimated mass savings of 10% (0.32kg), while the actual redesign of the bracket revealed a 12% (0.38kg) mass savings.
Journal Article

Implementation Methodologies for Simulation as a Service (SaaS) to Develop ADAS Applications

2021-04-06
2021-01-0116
Over the years, the complexity of autonomous vehicle development (and concurrently the verification and validation) has grown tremendously in terms of component-, subsystem- and system-level interactions between autonomy and the human users. Simulation-based testing holds significant promise in helping to identify both problematic interactions between component-, subsystem-, and system-levels as well as overcoming delays typically introduced by the default full-scale on-road testing. Software in Loop (SiL) simulation is utilized as an intermediate step towards software deployment for autonomous vehicles (AV) to make them reliable. SiL efforts can help reduce the resources required for successful deployment by helping to validate the software for millions of road miles. A key enabler for accelerating SiL processes is the ability to use Simulation as a Service (SaaS) rather than just isolated instances of software.
Technical Paper

Experimental Comparison of a Rotary Valvetrain on the Performance and Emissions of a Light Duty Spark Ignition Engine

2023-10-31
2023-01-1613
Rotary valve technology can provide increased flow area and higher discharge coefficients than conventional poppet valves for internal combustion engines. This increase in intake charging efficiency can improve the power density of four-stroke internal combustion engines, particularly at high engine speeds, where flow is choked through conventional poppet valves. In this work, the valvetrain of a light duty single cylinder spark ignition engine was replaced with a rotary valve train. The impact of this valvetrain conversion on performance and emissions was evaluated by comparing spark timing sweeps with lambda ranging from 0.8 to 1.1 at wide open throttle. The results indicated that the rotary valvetrain increased the amount of air trapped at intake valve closing and resulted in a significantly faster burn duration than the conventional valvetrain.
Technical Paper

Experimental Analysis of a Multiple Radiator Cooling System with Computer Controlled Flow Rates

2020-04-14
2020-01-0944
The automotive cooling system configuration has remained fixed for many decades with a large radiator plus fan, coolant pump, and bypass valve. To reduce cooling system power consumption, the introduction of multiple computer-controlled heat exchangers may offer some benefits. A paradigm shift from a single large radiator, sized for maximum load, to n-small radiators with individual flow control valves should allow fine tuning of the heat rejection needs to minimize power. In this project, a series of experimental scenarios featuring two identical parallel radiators have been studied for low thermal load engine cooling (e.g., idling) in ground transportation applications. For high thermal load scenarios using two radiators, the fans required between 1120 - 3600 W to maintain the system about the coolant reference temperature of 85oC.
Journal Article

Elicitation, Computational Representation, and Analysis of Mission and System Requirements

2022-03-29
2022-01-0363
Strategies for evaluating the impact of mission requirements on the design of mission-specific vehicles are needed to enable project managers to assess potential benefits and associated costs of changes in requirements. Top-level requirements that cause significant cascaded difficulties on lower-level requirements should be identified and presented to decision-makers. This paper aims to introduce formal methods and computational tools to enable the analysis and allocation of mission requirements.
Technical Paper

Development of New Turbulence Models and Computational Methods for Automotive Aerodynamics and Heat Transfer

2008-12-02
2008-01-2999
This paper is a review of turbulence models and computational methods that have been produced at Clemson University's Advanced Computational Research Laboratory. The goal of the turbulence model development has been to create physics-based models that are economically feasible and can be used in a competitive environment, where turnaround time is a critical factor. Given this goal, all of the work has been focused on Reynolds-Averaged Navier-Stokes (RANS) simulations in the eddy-viscosity framework with the majority of the turbulence models having three transport equations in addition to mass, momentum, and energy. Several areas have been targeted for improvement in turbulence modeling for complex flows such as those found in motorsports aerodynamics: the effects of streamline curvature and rotation on the turbulence field, laminar-turbulent transition, and separated shear layer rollup and breakdown.
Journal Article

Control of a Thermoelectric Cooling System for Vehicle Components and Payloads - Theory and Test

2017-03-28
2017-01-0126
Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
Technical Paper

Comparing Open-Source UDS Implementations Through Fuzz Testing

2024-04-09
2024-01-2799
In the ever-evolving landscape of automotive technology, the need for robust security measures and dependable vehicle performance has become paramount with connected vehicles and autonomous driving. The Unified Diagnostic Services (UDS) protocol is the diagnostic communication layer between various vehicle components which serves as a critical interface for vehicle servicing and for software updates. Fuzz testing is a dynamic software testing technique that involves the barrage of unexpected and invalid inputs to uncover vulnerabilities and erratic behavior. This paper presents the implementation of fuzz testing methodologies on the UDS layer, revealing the potential vulnerabilities that could be exploited by malicious entities. By employing both open-source and commercial fuzzing tools and techniques, this paper simulates real-world scenarios to assess the UDS layer’s resilience against anomalous data inputs.
Journal Article

Chassis Dynamometer as a Development Platform for Vehicle Hardware In-the-Loop “VHiL”

2013-05-15
2013-01-9018
This manuscript provides a review of different types and categorization of the chassis dynamometer systems. The review classifies the chassis dynamometers based on the configuration, type of rollers and the application type. Additionally the manuscript discusses several application examples of the chassis dynamometer including: performance and endurance mileage accumulation tests, fuel efficiency and exhaust emissions, noise, vibration and harshness testing (NVH). Different types of the vehicle attachment system in the dynamometer cell and its influences on the driving force characteristics and the vehicle acoustic signature is also discussed. The text also highlights the impact of the use of the chassis dynamometer as a development platform and its impact on the development process. Examples of using chassis dynamometer as a development platform using Vehicle Hardware In-the-Loop (VHiL) approach including drivability assessment and transmission calibrations are presented.
Journal Article

Characterization of Flow Drill Screwdriving Process Parameters on Joint Quality

2014-09-16
2014-01-2241
A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat.
Journal Article

Approaches for Simulation Model Reuse in Systems Design — A Review

2022-03-29
2022-01-0355
In this paper, we review the literature related to the reuse of computer-based simulation models in the context of systems design. Models are used to capture aspects of existing or envisioned systems and are simulated to predict the behavior of these systems. However, developing such models from scratch requires significant time and effort. Researchers have recognized that the time and effort can be reduced if existing models or model components are reused, leading to the study of model reusability. In this paper, we review the tasks necessary to retrieve and reuse model components from repositories, and to prepare new models and model components such that they are more amenable for future reuse. Model reuse can be significantly enhanced by carefully characterizing the model, and capturing its meaning and intent so that potential users can determine whether the model meets their needs.
Journal Article

An Integrated Cooling System for Hybrid Electric Vehicle Motors: Design and Simulation

2018-04-03
2018-01-1108
Hybrid electric vehicles offer the advantages of reduced emissions and greater travel range in comparison to conventional and electric ground vehicles. Regardless of propulsion strategy, efficient cooling of electric motors remains an open challenge due to the operating cycles and ambient conditions. The onboard thermal management system must remove the generated heat so that the motors and other vehicle components operate within their designed temperature ranges. In this article, an integrated thermal structure, or cradle, is designed to efficiently transfer heat within the motor housing to the end plates for transmission to an external heat exchanger. A radial array of heat pipes function as an efficient thermal connector between the motor and heat connector, or thermal bus, depending on the configuration. Cooling performance has been evaluated for various driving cycles.
Technical Paper

An Advanced Automatic Transmission with Interlocking Dog Clutches: High-Fidelity Modeling, Simulation and Validation

2017-03-28
2017-01-1141
Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
Technical Paper

A User Configurable Powertrain Controller with Open Software Management

2007-04-16
2007-01-1601
The emphasis on vehicle fuel economy and tailpipe emissions, coupled with a trend toward greater system functionally, has prompted automotive engineers to develop on-board control systems with increased requirements and complexity. Mainstream engine controllers regulate fuel, spark, and other subsystems using custom solutions that incorporate off-the-shelf hardware components. Although the digital processor core and the peripheral electronics may be similar, these controllers are targeted to fixed engine architectures which limit their flexibility across vehicle platforms. Moreover, additional software needs are emerging as electronics continue to permeate the ground transportation sector. Thus, automotive controllers will be required to assume increased responsibility while effectively communicating with distributed hardware modules.
Journal Article

A Systems Approach in Developing an Ultralightweight Outside Mounted Rearview Mirror Using Discontinuous Fiber Reinforced Thermoplastics

2019-04-02
2019-01-1124
Fuel efficiency improvement in automobiles has been a topic of great interest over the past few years, especially with the introduction of the new CAFE 2025 standards. Although there are multiple ways of improving the fuel efficiency of an automobile, lightweighting is one of the most common approaches taken by many automotive manufacturers. Lightweighting is even more significant in electric vehicles as it directly affects the range of the vehicle. Amidst this context of lightweighting, the use of composite materials as alternatives to metals has been proven in the past to help achieve substantial weight reduction. The focus of using composites for weight reduction has however been typically limited to major structural components, such as BiW and closures, due to high material costs. Secondary structural components which contribute approximately 30% of the vehicle weight are usually neglected by these weight reduction studies.
Technical Paper

A Robust CFD Methodology for Physically Realistic and Economically Feasible Results in Racing - Part V: Exhaust-Valve Region Flow

2006-04-03
2006-01-1592
Part V of this five-part paper investigates the flow field and the total pressure loss mechanisms for three valve lifts in the exhaust region of a V8 racecar engine using the robust, systematic computational methodology described in Part I. The replica of the engine geometry includes a cylinder, detailed combustion chamber, exhaust valve, valve seat, port, and “exhaust pipe”. A set of fully-converged and grid-independent solutions for the steady, time-averaged (or RANS), non-linear Navier-Stokes equations are obtained using dense and high quality grids, involving 2.1∼3.0 finite volumes, and unusually strict convergence criteria. Turbulence closure is attained via the realizable k-ε (RKE) model used in conjunction with the non-equilibrium wall function near-wall treatment. The validation presented in Part I showed that flow rate results from the “blind simulations” agree well with the experimental measurements.
X