Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Varying Intake Stroke Injection Timing of Wet Ethanol in LTC

2020-04-14
2020-01-0237
Computational Fluid Dynamics (CFD) modeling was used to investigate the effects of the direct injection of wet ethanol at various injection timings during the intake stroke in a diesel engine with a shallow bowl piston. Thermally Stratified Compression Ignition (TSCI) has been proposed to expand the operating range of Low Temperature Combustion (LTC) by broadening the temperature distribution in the cylinder prior to ignition. TSCI is accomplished by injecting either water or a water-fuel mixture with a high latent heat of vaporization like wet ethanol. This current study focuses on isolating the effects that injecting such a high heat of vaporization mixture during the intake stroke has on the distribution of temperature and equivalence ratio in the cylinder before the onset of combustion. A CONVERGE 3-D CFD model of a single cylinder diesel research engine using Reynolds Averaged Naiver Stokes (RANS) turbulence modeling was developed and validated against experimental data.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

Use of Machine Learning for Real-Time Non-Linear Model Predictive Engine Control

2019-04-02
2019-01-1289
Non-linear model predictive engine control (nMPC) systems have the ability to reduce calibration effort while improving transient engine response. The main drawback of nMPC for engine control is the computational power required to realize real-time operation. Most of this computational power is spent linearizing the non-linear plant model at each time step. Additionally, the effectiveness of the nMPC system relies heavily on the accuracy of the model(s) used to predict the future system behavior, which can be difficult to model physically. This paper introduces a hybrid modeling approach for internal combustion engines that combines physics-based and machine learning techniques to generate accurate models that can be linearized with low computational power. This approach preserves the generalization and robustness of physics-based models, while maintaining high accuracy of data-driven models. Advantages of applying the proposed model with nMPC are discussed.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Journal Article

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

2020-04-14
2020-01-0275
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston.
Technical Paper

Synthesis of Statistically Representative Driving Cycle for Tracked Vehicles

2023-04-11
2023-01-0115
Drive cycles are a core piece of vehicle development testing methodology. The control and calibration of the vehicle is often tuned over drive cycles as they are the best representation of the real-world driving the vehicle will see during deployment. To obtain general performance numerous drive cycles must be generated to ensure final control and calibration avoids overfitting to the specifics of a single drive cycle. When real-world driving cycles are difficult to acquire methods can be used to create statistically similar synthetic drive cycles to avoid the overfitting problem. This subject has been well addressed within the passenger vehicle domain but must be expanded upon for utilization with tracked off-road vehicles. Development of hybrid tracked vehicles has increased this need further. This study shows that turning dynamics have significant influence on the vehicle power demand and on the power demand on each individual track.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Technical Paper

Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems

2003-03-03
2003-01-0272
The introduction of mechatronic components into thermal-mechanical systems provides an opportunity to apply real time control strategies for enhanced engine performance. The traditional automotive thermal management system contains the engine, thermostat, air cooled radiator, and centrifugal pump driven by the crankshaft belt. A servo-motor valve and pump may be inserted into the vehicle's heating/cooling system to regulate the coolant flow with the engine control unit. To study these dual actuators, a scale experimental cooling system has been investigated. This automotive inspired thermal system contains a heater, smart thermostat valve, radiator, and variable speed electric pump. A lumped parameter model has been developed to describe the system's behavioral response and establish the basis for temperature regulation. Real time control algorithms are introduced for the synchronous regulation of the valve and pump.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines

2016-04-05
2016-01-0575
Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
X