Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

VoGe: A Voice and Gesture System for Interacting with Autonomous Cars

2017-03-28
2017-01-0068
In the next 20 years fully autonomous vehicles are expected to be in the market. The advance on their development is creating paradigm shifts on different automotive related research areas. Vehicle interiors design and human vehicle interaction are evolving to enable interaction flexibility inside the cars. However, most of today’s vehicle manufacturers’ autonomous car concepts maintain the steering wheel as a control element. While this approach allows the driver to take over the vehicle route if needed, it causes a constraint in the previously mentioned interaction flexibility. Other approaches, such as the one proposed by Google, enable interaction flexibility by removing the steering wheel and accelerator and brake pedals. However, this prevents the users to take control over the vehicle route if needed, not allowing them to make on-route spontaneous decisions, such as stopping at a specific point of interest.
Technical Paper

Utilizing Neural Networks for Semantic Segmentation on RGB/LiDAR Fused Data for Off-road Autonomous Military Vehicle Perception

2023-04-11
2023-01-0740
Image segmentation has historically been a technique for analyzing terrain for military autonomous vehicles. One of the weaknesses of image segmentation from camera data is that it lacks depth information, and it can be affected by environment lighting. Light detection and ranging (LiDAR) is an emerging technology in image segmentation that is able to estimate distances to the objects it detects. One advantage of LiDAR is the ability to gather accurate distances regardless of day, night, shadows, or glare. This study examines LiDAR and camera image segmentation fusion to improve an advanced driver-assistance systems (ADAS) algorithm for off-road autonomous military vehicles. The volume of points generated by LiDAR provides the vehicle with distance and spatial data surrounding the vehicle.
Technical Paper

Usefulness and Time Savings Metrics to Evaluate Adoption of Digital Twin Technology

2023-04-11
2023-01-0111
The application of virtual engineering methods can streamline the product design process through improved collaboration opportunities among the technical staff and facilitate additive manufacturing processes. A product digital twin can be created using the available computer-aided design and analytical mathematical models to numerically explore the current and future system performance based on operating cycles. The strategic decision to implement a digital twin is of interest to companies, whether the required financial and workforce resources will be worthwhile. In this paper, two metrics are introduced to assist management teams in evaluating the technology potential. The usefulness and time savings metrics will be presented with accompanying definitions. A case study highlights the usefulness metric for the “Deep Orange” prototype vehicle, an innovative off-road hybrid vehicle designed and fabricated at Clemson University.
Technical Paper

Ultra-Low NOx Emission Prediction for Heavy Duty Diesel Applications Using a Map-Based Approach

2019-04-02
2019-01-0987
As vehicle emissions regulations become increasingly stringent, there is a growing need to accurately model aftertreatment systems to aid in the development of ultra-low NOx vehicles. Common solutions to this problem include the development of complex chemical models or expansive neural networks. This paper aims to present the development process of a simpler Selective Catalytic Reduction (SCR) conversion efficiency Simulink model for the purposes of modeling tail pipe NOx emission levels based on various inputs, temperature shifts and SCR locations, arrangements and/or sizes in the system. The main objective is to utilize this model to predict tail pipe NOx emissions of the EPA Federal Test Procedures for heavy-duty vehicles. The model presented within is focused exclusively on heavy-duty application compression ignition engines and their corresponding aftertreatment setups.
Journal Article

Track, GoPro, and Prescan Testing of an ADAS Camera

2023-04-11
2023-01-0826
In order to validate the operation of advanced driver assistance systems (ADAS), tests must be performed that assess the performance of the system in response to different scenarios. Some of these systems are designed for crash-imminent situations, and safely testing them requires large stretches of controlled pavement, expensive surrogate targets, and a fully functional vehicle. As a possible more-manageable alternative to testing the full vehicle in these situations, this study sought to explore whether these systems could be isolated, and tests could be performed on a bench via a hardware-in-the-loop methodology. For camera systems, these benches are called Camera-in-the-Loop (CiL) systems and involve presenting visual stimuli to the device via an external input.
Technical Paper

Three-Layered Design, Protection & Control of Lunar DC Microgrids Utilizing WBG-Based Flexible DC Energy Router

2023-09-05
2023-01-1505
The reliable operation of power systems on the lunar surface is crucial for critical research activities and supporting life. These systems are standalone or interconnected grids that integrate intermittent power sources and distributed energy storage. Lunar microgrids must be highly reliable, reconfigurable, and efficient. To meet these requirements, we propose the flexible DC energy router (FeDER), a modular and scalable power management unit for interconnected lunar DC microgrids. The FeDER integrates local energy storage and addresses various microgrid power management needs such as fault management, stability enhancement, power flow regulation, and power quality improvement. The lunar DC microgrids' design, protection, and control are achieved using a three-layered approach: (1) graph theory, (2) energy management system, and (3) smart resistor control. The lunar power grid architecture is introduced and the FeDER stability enhancement is implemented in the OPAL-RT platform.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

The Use of Single Moving Vehicle Testing to Duplicate the Dynamic Vehicle Response From Impacts Between Two Moving Vehicles

2002-03-04
2002-01-0558
The Federal Side Impact Test Procedure prescribed by FMVSS 214, simulates a central, orthogonal intersection collision between two moving vehicles by impacting the side of the stationary test vehicle with a moving test buck in a crabbed configuration. While the pre- and post-impact speeds of the vehicles involved in an accident can not be duplicated using this method, closing speeds, vehicle damage, vehicle speed changes and vehicle accelerations can be duplicated. These are the important parameters for the examination of vehicle restraint system performance and the prediction of occupant injury. The acceptability of this method of testing is not as obvious for the reconstruction of accidents where the impact is non-central, or the angle of impact is not orthogonal. This paper will examine the use of crash testing with a single moving vehicle to simulate oblique or non-central collisions between two moving vehicles.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Technical Paper

Test Scenarios, Equipment and Testing Process for LDW LDP Performance Evaluation

2015-04-14
2015-01-1404
In this paper, a series of design, development, and implementation details for testing and evaluation of Lane Departure Warning and Prevention systems are being discussed. The approach taken to generate a set of repeatable and relevant test scenarios and to formulate the test procedures to ensure the fidelity of the collected data includes initial statistical analysis of applicable statistics; growth and probabilistic pruning of a test matrix; simulation studies to support procedure design; and vehicle instrumentation for data collection. The success of this comprehensive approach strongly suggests that the steps illustrated in this paper can serve as guidelines towards a more general class of vehicular safety and advanced driver assistance systems evaluation.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Synthesis of Statistically Representative Driving Cycle for Tracked Vehicles

2023-04-11
2023-01-0115
Drive cycles are a core piece of vehicle development testing methodology. The control and calibration of the vehicle is often tuned over drive cycles as they are the best representation of the real-world driving the vehicle will see during deployment. To obtain general performance numerous drive cycles must be generated to ensure final control and calibration avoids overfitting to the specifics of a single drive cycle. When real-world driving cycles are difficult to acquire methods can be used to create statistically similar synthetic drive cycles to avoid the overfitting problem. This subject has been well addressed within the passenger vehicle domain but must be expanded upon for utilization with tracked off-road vehicles. Development of hybrid tracked vehicles has increased this need further. This study shows that turning dynamics have significant influence on the vehicle power demand and on the power demand on each individual track.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Prescan Extension Testing of an ADAS Camera

2023-04-11
2023-01-0831
Testing vision-based advanced driver assistance systems (ADAS) in a Camera-in-the-Loop (CiL) bench setup, where external visual inputs are used to stimulate the system, provides an opportunity to experiment with a wide variety of test scenarios, different types of vehicle actors, vulnerable road users, and weather conditions that may be difficult to replicate in the real world. In addition, once the CiL bench is setup and operating, experiments can be performed in less time when compared to track testing alternatives. In order to better quantify normal operating zones, track testing results were used to identify behavior corridors via a statistical methodology. After determining normal operational variability via track testing of baseline stationary surrogate vehicle and pedestrian scenarios, these operating zones were applied to screen-based testing in a CiL test setup to determine particularly challenging scenarios which might benefit from replication in a track testing environment.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Journal Article

Pre-Deployment Testing of Low Speed, Urban Road Autonomous Driving in a Simulated Environment

2020-04-14
2020-01-0706
Low speed autonomous shuttles emulating SAE Level L4 automated driving using human driver assisted autonomy have been operating in geo-fenced areas in several cities in the US and the rest of the world. These autonomous vehicles (AV) are operated by small to mid-sized technology companies that do not have the resources of automotive OEMs for carrying out exhaustive, comprehensive testing of their AV technology solutions before public road deployment. Due to the low speed of operation and hence not operating on roads containing highways, the base vehicles of these AV shuttles are not required to go through rigorous certification tests. The way these vehicles’ driver assisted AV technology is tested and allowed for public road deployment is continuously evolving but is not standardized and shows differences between the different states where these vehicles operate.
Technical Paper

Pointing Gesture Based Point of Interest Identification in Vehicle Surroundings

2018-04-03
2018-01-1094
This article presents a pointing gesture-based point of interest computation method via pointing rays’ intersections for situated awareness interactions in vehicles. The proposed approach is compared with two alternative methods: (a) a point of interest identification method based on the intersection of the pointing ray with the point cloud (PoC) resulting from the vehicle sensors, and (b) the traditional ray-casting approach, where the point of interest is computed based on the first intersection of the pointing rays with locations stored in a 2D annotated map. Simulation results show that the presented method outperforms by 36.25% the traditional ray casting one. However, as it was expected, the sensor-based computation method is more accurate. The validation of our approach was conducted by experiments performed in a test track facility.
Technical Paper

Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines

2016-04-05
2016-01-0575
Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
X