Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Use of Hardware in the Loop (HIL) Simulation for Developing Connected Autonomous Vehicle (CAV) Applications

2019-04-02
2019-01-1063
Many smart cities and car manufacturers have been investing in Vehicle to Infrastructure (V2I) applications by integrating the Dedicated Short-Range Communication (DSRC) technology to improve the fuel economy, safety, and ride comfort for the end users. For example, Columbus, OH, USA is placing DSRC Road Side Units (RSU) to the traffic lights which will publish traffic light Signal Phase and Timing (SPaT) information. With DSRC On Board Unit (OBU) equipped vehicles, people will start benefiting from this technology. In this paper, to accelerate the V2I application development for Connected and Autonomous Vehicles (CAV), a Hardware in the Loop (HIL) simulator with DSRC RSU and OBU is presented. The developed HIL simulator environment is employed to implement, develop and evaluate V2I connected vehicle applications in a fast, safe and cost-effective manner.
Technical Paper

Trust-Based Control and Scheduling for UGV Platoon under Cyber Attacks

2019-04-02
2019-01-1077
Unmanned ground vehicles (UGVs) may encounter difficulties accommodating environmental uncertainties and system degradations during harsh conditions. However, human experience and onboard intelligence can may help mitigate such cases. Unfortunately, human operators have cognition limits when directly supervising multiple UGVs. Ideally, an automated decision aid can be designed that empowers the human operator to supervise the UGVs. In this paper, we consider a connected UGV platoon under cyber attacks that may disrupt safety and degrade performance. An observer-based resilient control strategy is designed to mitigate the effects of vehicle-to-vehicle (V2V) cyber attacks. In addition, each UGV generates both internal and external evaluations based on the platoons performance metrics. A cloud-based trust-based information management system collects these evaluations to detect abnormal UGV platoon behaviors.
Technical Paper

Transformational Technologies Reshaping Transportation - An Academia Perspective

2019-10-14
2019-01-2620
This paper and the associated lecture present an overview of technology trends and of market and business opportunities created by technology, as well as of the challenges posed by environmental and economic considerations. Commercial vehicles are one of the engines of our economy. Moving goods and people efficiently and economically is a key to continued industrial development and to strong employment. Trucks are responsible for nearly 70% of the movement of goods in the USA (by value) and represent approximately 300 billion of the 3.21 trillion annual vehicle miles travelled by all vehicles in the USA while public transit enables mobility and access to jobs for millions of people, with over 10 billion trips annually in the USA creating and sustaining employment opportunities.
Technical Paper

Three-Layered Design, Protection & Control of Lunar DC Microgrids Utilizing WBG-Based Flexible DC Energy Router

2023-09-05
2023-01-1505
The reliable operation of power systems on the lunar surface is crucial for critical research activities and supporting life. These systems are standalone or interconnected grids that integrate intermittent power sources and distributed energy storage. Lunar microgrids must be highly reliable, reconfigurable, and efficient. To meet these requirements, we propose the flexible DC energy router (FeDER), a modular and scalable power management unit for interconnected lunar DC microgrids. The FeDER integrates local energy storage and addresses various microgrid power management needs such as fault management, stability enhancement, power flow regulation, and power quality improvement. The lunar DC microgrids' design, protection, and control are achieved using a three-layered approach: (1) graph theory, (2) energy management system, and (3) smart resistor control. The lunar power grid architecture is introduced and the FeDER stability enhancement is implemented in the OPAL-RT platform.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

The Ingress and Egress Strategies of Wheelchair Users Transferring Into and Out of Two Sedans

2018-04-03
2018-01-1321
The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. The purpose of the current study is to build upon the previous exploratory study that investigated the transfer strategies of wheelchair users by observing YouTube videos. This observational study videotaped five wheelchair users transferring from their wheelchairs into two research vehicles, a small and mid-size sedan that were equipped with a 50mm grid. The goal of this study was to use these videos and vehicle grids to precisely identify ingress and egress motions as well as “touch points” in a controlled setting with a small sample of five male wheelchair users. Using the videos from multiple different camera perspectives, the participants’ ingress and egress transfers were coded, documenting the touch points and step-by-step action sequences.
Technical Paper

The Influence of Cooling Air-Path Restrictions on Fuel Consumption of a Series Hybrid Electric Off-Road Tracked Vehicle

2023-10-31
2023-01-1611
Electrification of off-road vehicle powertrains can increase mobility, improve energy efficiency, and enable new utility by providing high amounts of electrical power for auxiliary devices. These vehicles often operate in extreme temperature conditions at low ground speeds and high power levels while also having significant cooling airpath restrictions. The restrictions are a consequence of having grilles and/or louvers in the airpath to prevent damage from the operating environment. Moreover, the maximum operating temperatures for high voltage electrical components, like batteries, motors, and power-electronics, can be significantly lower than those of the internal combustion engine. Rejecting heat at a lower temperature gradient requires higher flow rates of air for effective heat exchange to the operating environment at extreme temperature conditions.
Technical Paper

The Effects of Varying Penetration Rates of L4-L5 Autonomous Vehicles on Fuel Efficiency and Mobility of Traffic Networks

2020-04-14
2020-01-0137
With the current drive of automotive and technology companies towards producing vehicles with higher levels of autonomy, it is inevitable that there will be an increasing number of SAE level L4-L5 autonomous vehicles (AVs) on roadways in the near future. Microscopic traffic simulators that simulate realistic traffic flow are crucial in studying, understanding and evaluating the fuel usage and mobility effects of having a higher number of autonomous vehicles (AVs) in traffic under realistic mixed traffic conditions including both autonomous and non-autonomous vehicles. In this paper, L4-L5 AVs with varying penetration rates in total traffic flow were simulated using the microscopic traffic simulator Vissim on urban, mixed and freeway roadways. The roadways used in these simulations were replicas of real roadways in and around Columbus, Ohio, including an AV shuttle routes in operation.
Journal Article

The Effects of Thick Thermal Barrier Coatings on Low-Temperature Combustion

2020-04-14
2020-01-0275
An experimental study was conducted on a Ricardo Hydra single-cylinder light-duty diesel research engine. Start of Injection (SOI) timing sweeps from -350 deg aTDC to -210 deg aTDC were performed on a total number of five pistons including two baseline metal pistons and three coated pistons to investigate the effects of thick thermal barrier coatings (TBCs) on the efficiency and emissions of low-temperature combustion (LTC). A fuel with a high latent heat of vaporization, wet ethanol, was chosen to eliminate the undesired effects of thick TBCs on volumetric efficiency. Additionally, the higher surface temperatures of the TBCs can be used to help vaporize the high heat of vaporization fuel and avoid excessive wall wetting. A specialized injector with a 60° included angle was used to target the fuel spray at the surface of the coated piston.
Technical Paper

Teen Drivers’ Understanding of Instrument Cluster Indicators and Warning Lights from a Gasoline, a Hybrid and an Electric Vehicle

2020-04-14
2020-01-1199
In the U.S., the teenage driving population is at the highest risk of being involved in a crash. Teens often demonstrate poor vehicle control skills and poor ability to identify hazards, thus proper understanding of automotive indicators and warnings may be even more critical for this population. This research evaluates teen drivers’, between 15 to 17 years of age, understanding of symbols from vehicles featuring advanced driving assistant systems and multiple powertrain configurations. Teen drivers’ (N=72) understanding of automotive symbols was compared to three other groups with specialized driving experience and technical knowledge: automotive engineering graduate students (N=48), driver rehabilitation specialists (N=16), and performance driving instructors (N=15). Participants matched 42 symbols to their descriptions and then selected the five symbols they considered most important.
Technical Paper

Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety

2023-04-11
2023-01-0846
1 Autonomous Driving Systems (ADS) are developing rapidly. As vehicle technology advances to SAE level 3 and above (L4, L5), there is a need to maximize and verify safety and operational benefits. As a result, maintenance of these ADS systems is essential which includes scheduled, condition-based, risk-based, and predictive maintenance. A lot of techniques and methods have been developed and are being used in the maintenance of conventional vehicles as well as other industries, but ADS is new technology and several of these maintenance types are still being developed as well as adapted for ADS. In this work, we are presenting a systematic literature review of the “State of the Art” knowledge for the maintenance of a fleet of ADS which includes fault diagnostics, prognostics, predictive maintenance, and preventive maintenance.
Technical Paper

Split Injection of High-Ethanol Content Fuels to Reduce Knock in Spark Ignition

2023-04-11
2023-01-0326
Spark ignition engines have low tailpipe criteria pollutants due to their stoichiometric operation and three-way catalysis and are highly controllable. However, one of their main drawbacks is that the compression ratio is low due to knock, which incurs an efficiency penalty. With a global push towards low-lifecycle-carbon renewable fuels, high-octane alternatives to gasoline such as ethanol are attractive options as fuels for spark ignition engines. Under premixed spark ignition operating conditions, ethanol can enable higher compression ratios than regular-grade gasoline due to its high octane number. The high cooling potential of high-ethanol content gasolines, like E85, or of ethanol-water blends, like hydrous ethanol, can be leveraged to further reduce knock and enable higher compression ratios as well as further downsizing and boosting to reduce frictional and throttling losses.
Technical Paper

Source Management of Aircraft Electrical Power Systems with Hardware in the Loop Verification

2017-09-19
2017-01-2034
Future aircraft will demand a significant amount of electrical power to drive primary flight control surfaces. The electrical system architecture needed to source these flight critical loads will have to be resilient, autonomous, and fast. Designing and ensuring that a power system architecture can meet the load requirements and provide power to the flight critical buses at all times is fundamental. In this paper, formal methods and linear temporal logic are used to develop a contactor control strategy to meet the given specifications. The resulting strategy is able to manage multiple contactors during different types of generator failures. In order to verify the feasibility of the control strategy, a real-time simulation platform is developed to simulate the electrical power system. The platform has the capability to test an external controller through Hardware in the Loop (HIL).
Technical Paper

Simulation-Based Evaluation of Spark-Assisted Compression Ignition Control for Production

2020-04-14
2020-01-1145
Spark-assisted compression ignition (SACI) leverages flame propagation to trigger autoignition in a controlled manner. The autoignition event is highly sensitive to several parameters, and thus, achieving SACI in production demands a high tolerance to variations in conditions. Limited research is available to quantify the combustion response of SACI to these variations. A simulation study is performed to establish trends, limits, and control implications for SACI combustion over a wide range of conditions. The operating space was evaluated with a detailed chemical kinetics model. Key findings were synthesized from these results and applied to a 1-D engine model. This model identified performance characteristics and potential actuator positions for a production-viable SACI engine. This study shows charge preparation is critical and can extend the low-load limit by strengthening flame propagation and the high-load limit by reducing ringing intensity.
Journal Article

Scaling Considerations for Fluidic Oscillator Flow Control on the Square-back Ahmed Vehicle Model

2015-04-14
2015-01-1561
Improvements in highway fuel economy require clever design and novel methods to reduce the drag coefficient. The integration of active flow control devices into vehicle design shows promise for greater reductions in drag coefficient. This paper examines the use of fluidic oscillators for separation control at the rear of an Ahmed vehicle model. A fluidic oscillator is a simple device that generates a sweeping jet output, similar to some windshield wiper spray nozzles, and is increasingly recognized as an efficient means to control separation. In this study, fluidic oscillators were used to blow unsteady air jets and control flow separation on rear boat-tail flaps, achieving drag reductions greater than 70 counts. The method appears to scale favorably to a larger model, and realistic effects such as a rolling road appear to have a small impact on the oscillator's control authority.
Technical Paper

Reducing Fuel Consumption by Using Information from Connected and Automated Vehicle Modules to Optimize Propulsion System Control

2019-04-02
2019-01-1213
Global regulatory targets and customer demand are driving the automotive industry to improve vehicle fuel efficiency. Methods for achieving increased efficiency include improvements in the internal combustion engine and an accelerating shift toward electrification. A key enabler to maximizing the benefit from these new powertrain technologies is proper systems integration work - including developing optimized controls for the propulsion system as a whole. The next step in the evolution of improving the propulsion management system is to make use of available information not typically associated with the powertrain. Advanced driver assistance systems, vehicle connectivity systems and cloud applications can provide information to the propulsion management system that allows a shift from instantaneous optimization of fuel consumption, to optimization over a route. In the current paper, we present initial work from a project being done as part of the DOE ARPA-E NEXTCAR program.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

Quantification of Linear Approximation Error for Model Predictive Control of Spark-Ignited Turbocharged Engines

2019-09-09
2019-24-0014
Modern turbocharged spark-ignition engines are being equipped with an increasing number of control actuators to meet fuel economy, emissions, and performance targets. The response time variations between engine control actuators tend to be significant during transients and necessitate highly complex actuator scheduling routines. Model Predictive Control (MPC) has the potential to significantly reduce control calibration effort as compared to the current methodologies that are based on decentralized feedback control strategies. MPC strategies simultaneously generate all actuator responses by using a combination of current engine conditions and optimization of a control-oriented plant model. To achieve real-time control, the engine model and optimization processes must be computationally efficient without sacrificing effectiveness. Most MPC systems intended for real-time control utilize a linearized model that can be quickly evaluated using a sub-optimal optimization methodology.
Technical Paper

Prediction of Human Actions in Assembly Process by a Spatial-Temporal End-to-End Learning Model

2019-04-02
2019-01-0509
It’s important to predict human actions in the industry assembly process. Foreseeing future actions before they happened is an essential part for flexible human-robot collaboration and crucial to safety issues. Vision-based human action prediction from videos provides intuitive and adequate knowledge for many complex applications. This problem can be interpreted as deducing the next action of people from a short video clip. The history information needs to be considered to learn these relations among time steps for predicting the future steps. However, it is difficult to extract the history information and use it to infer the future situation with traditional methods. In this scenario, a model is needed to handle the spatial and temporal details stored in the past human motions and construct the future action based on limited accessible human demonstrations.
Journal Article

Predicting Lead Vehicle Velocity for Eco-Driving in the Absence of V2V Information

2023-04-11
2023-01-0220
Accurately predicting the future behavior of the surrounding traffic, especially the velocity of the lead vehicle is important for optimizing the energy consumption and improve the safety of Connected and Automated Vehicles (CAVs). Several studies report methods to predict short-to-mid-length lead vehicle velocity using stochastic models or other data-driven techniques, which require availability of extensive data and/or Vehicle-to-Vehicle (V2V) communication. In the absence of connectivity, or in data-restricted cases, the prediction must rely only on the measured position and relative velocity of the lead vehicle at the current time. This paper proposes two velocity predictors to predict short-to-mid-length lead vehicle velocity. The first predictor is based on a Constant Acceleration (CA) with an augmented stop mode. The second one is based on a modified Enhanced Driver Model (EDM-LOS) with line-of-sight feature.
X