Refine Your Search

Topic

Search Results

Viewing 1 to 10 of 10
Research Report

Unsettled Topics on the Use of IVHM in the Active Control Loop

2020-07-01
EPR2020011
The growth in global economies has led to a world that has become much more mobile in the last few decades. The number of enplanements has increased and is expected to continue to do so at an annual average rate of 1.8% through 2039 [1]. Prior to the COVID-19 pandemic, the number of aircraft in service was expected to increase annually to meet the travel demand. Next-generation, more-complex aircraft were scheduled to replace the older aircraft at a pace that still allowed sufficient capacity to meet the increasing demand. The events of 2020 have driven the industry to accelerate retirement of older aircraft while deferring the introduction of new aircraft. While the length of the industry recovery period cannot be predicted, most analysts believe that demand for travel will return once a vaccine is widely available.
Research Report

Unsettled Topics Concerning Adopting Blockchain Technology in Aerospace

2020-10-30
EPR2020021
In the aerospace industry, competition is high and the need to ensure safety and security while managing costs is paramount. Furthermore, stakeholders—who gain the most by working together—do not necessarily trust each other. Now, mix that with changing enterprise technologies, management of historical records, and customized legacy systems. This issue touches all aspects of the aerospace industry, from frequent flyer miles to aircraft maintenance and drives tremendous inefficiency and cost. Technology that augments, rather than replaces, is needed to transform these complex systems into efficient, digital processes. Blockchain technology offers collaborative opportunities for solving some of the data problems that have long challenged the industry. This SAE EDGE™ Research Report by Rhonda D. Walthall examines how blockchain technology could impact the aerospace industry and addresses some of the unsettled concerns surrounding its implementation.
Technical Paper

Pitot Probe and Total Air Temperature (TAT) Probe Ice Crystal Icing Impact to Aircraft Operation and Methods to Improve Probe Performance

2023-06-15
2023-01-1395
Pitot probes and Total Air Temperature (TAT) probes are critical to aircraft performance. They are also susceptible to becoming overwhelmed and produce erroneous outputs when flying in icing conditions, especially in high altitude ice crystal situations. When the probes are overwhelmed with ice crystals, it can have significant impacts to aircraft operations. Through design and process iterations, Collins Aerospace (also known as Rosemount Aerospace™), has developed new Appendix D compliant pitot and TAT probes that are much more capable in high ice crystal content icing environments which greatly reduce the adverse risks to the aircraft and engine systems that depend on these probes.
Technical Paper

Opportunities, Challenges and Requirements for Use of Blockchain in Unmanned Aircraft Systems

2023-09-05
2023-01-1504
Unmanned Aircraft Systems (UAS) have been growing over the past few years and will continue to grow at a faster pace in future. UAS faces many challenges in certification, airspace management, operations, supply chain, and maintenance. Blockchain, defined as a distributed ledger technology for the enterprise that features immutability, traceability, automation, data privacy, and security, can help address some of these challenges. However, blockchain also has certain challenges and is still evolving. Hence it is essential to study on how blockchain can help UAS. G-31 technical committee of SAE International responsible for electronic transactions for aerospace has published AIR 7356 [1] entitled Opportunities, Challenges and Requirements for use of Blockchain in Unmanned Aircraft Systems Operating below 400ft above ground level for Commercial Use. This paper is a teaser for AIR 7356 [1] document.
Technical Paper

Numerical Investigation of Pressure Tube Anti-Icing Heat Transfer

2023-06-15
2023-01-1440
This work presents the anti-icing simulation results from a pressure sensing probe. This study used various turbulence models to understand their influence in surface temperature prediction. A fully turbulence model and a transition turbulence model are considered in this work. Both dry air and icing conditions are considered for this study. The results show that at low Angle of Attack (AOA) both turbulence model results compared well and at higher AOA the results deviated. Overall, as AOA increases, the k-ꞷ SST model predicted the surface temperature colder than the Transition SST model result.
Journal Article

Experiences of Civil Certification of Multi-Core Processing Systems in Commercial and Military Avionics, Integration Activities, and Analysis

2019-03-19
2019-01-1382
Avionics systems are currently undergoing a transition from single core processor architectures to multi-core processor architectures. This transition enables significant advantages in reduction in size, weight, power (SWaP) and cost. However, avionics hardware and software certification policies and guidance are evolving as research and experience is gained with multi-core processor architectures. The unique challenges of using multi-core processors in certified avionics will be discussed. The requirements for a virtualization platform supporting multiple real-time operating system (RTOS) partitions on a multi-core processor used in safety-critical avionics systems are defined, including the ability to support multiple design assurance levels (DAL) on multiple cores, fault isolation and containment, static configuration as per ARINC 653, role-based development as per DO-297, and robust partitioning to reduce cost of incremental certification.
Journal Article

Digital Data Standards in Aircraft Asset Lifecycle: Current Status and Future Needs

2021-03-02
2021-01-0035
The aerospace ecosystem is a complex system of systems comprising of many stakeholders in exchanging technical, design, development, certification, operational, and maintenance data across the different lifecycle stages of an aircraft from concept, engineering, manufacturing, operations, and maintenance to its disposal. Many standards have been developed to standardize and improve the effectiveness, efficiency, and security of the data transfer processes in the aerospace ecosystem. There are still challenges in data transfer due to the lack of standards in certain areas and lack of awareness and implementation of some standards. G-31 standards committee of SAE International has conducted a study on the available digital data standards in aircraft asset life cycle to understand the current and future landscapes of the needed digital data standards and identify gaps. This technical paper presents the study conducted by the G-31 technical committee.
Technical Paper

Development of a Robust Surface Ply for Pneumatic Deicers

2023-06-15
2023-01-1403
The purpose of this paper to is to review the methodology applied by Collins Aerospace to develop, test and qualify a more robust surface ply rubber compound that has demonstrable improvements in durability and performance at sub-freezing temperatures. Using in-service products as a reference, pneumatic deicers in use on regional turboprop applications were selected as a basis for operational characteristics and observed failure modes. Custom test campaigns were developed by Collins to comparatively evaluate key characteristics of the surface ply material including low temperature elasticity, erosion durability, and fluid susceptibility. Collins’ proprietary engineered rubber formulations were individually evaluated and built into fully functional test deicers for component level testing to DO-160G environmental exposure, comparative ice shed performance in Collins’ Icing Wind Tunnel and erosion in Collins’ Rain Erosion Silo.
Journal Article

Checking Compliance of AADL Models with Modeling Guidelines using Resolint

2023-03-07
2023-01-0995
Certification standards for high-assurance systems include objectives for demonstrating compliance of process artifacts such as requirements and code with style guidelines and other standards. With the emergence of model-based development, similar objectives have been specified that apply to models. Demonstration of compliance is often achieved by employing a static analysis linter tool. This paper describes Resolint, an open-source, lightweight linter tool for checking compliance of Architecture Analysis and Design Language (AADL) models with modeling guidelines. AADL enables engineers to describe the key elements of distributed, real-time, embedded system architectures with a sufficiently rigorous semantics. In addition, AADL provides an annex mechanism for extending the base language, enabling new kinds of analyses and tool support. Resolint uses the AADL annex capability to provide a language for specifying style guide rule sets.
Technical Paper

A CDMA Based Approach for QoS Improvement in Intra-Aircraft Wireless Sensor Networks (WSN)

2024-06-01
2024-26-0435
Aviation industry is striving to leverage the technological advancements in connectivity, computation and data analytics. Scalable and robust connectivity enables futuristic applications like smart cabins, prognostic health management (PHM) and AI/ML based analytics for effective decision making leading to flight operational efficiency, optimized maintenance planning and aircraft downtime reduction. Wireless Sensor Networks (WSN) are gaining prominence on the aircraft for providing large scale connectivity solution that are essential for implementing various health monitoring applications like Structural Health Monitoring (SHM), Prognostic Health Management (PHM), etc. and control applications like smart lighting, smart seats, smart lavatory, etc. These applications help in improving passenger experience, flight operational efficiency, optimized maintenance planning and aircraft downtime reduction.
X