Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
Technical Paper

Investigation of S-N Test Data Scatter of Carburized 4320 Steel

2007-04-16
2007-01-1006
A series of bending fatigue tests were conducted and S-N data were obtained for two groups of 4320 steel samples: (1) carburized, quenched and tempered, (2) carburized, quenched, tempered and shot peened. Shot peening improved the fatigue life and endurance limit. The S-N data exhibited large scatter, especially for carburized samples and at the high cycle life regime. Sample characterization work was performed and scatter bands were established for residual stress distributions, in addition to fracture and fatigue properties for 4320 steel. Moreover, a fatigue life analysis was performed using fracture mechanics and strain life fatigue theories. Scatter in S-N curves was established computationally by using the lower bound and upper bound in materials properties, residual stress and IGO depth in the input data. The results for fatigue life analysis, using either computational fracture mechanics or strain life theory, agreed reasonably well with the test data.
Journal Article

Bake Hardening Behavior of DP, TBF, and PHS Steels with Ultimate Tensile Strengths Exceeding 1 GPa

2020-04-14
2020-01-0536
Third generation advanced high strength steels (AHSS) have been developed combining high strength and formability, allowing for lightweighting of vehicle structural components. These AHSS components are exposed to paint baking operations ranging in time and temperature to cure the applied paint. The paint baking treatment, combined with straining induced from part forming, may lead to increased in-service component performance due to a strengthening mechanism known as bake hardening. This study aims to quantify the bake hardening behavior of select AHSS grades. Materials investigated were press hardenable steels (PHS) 1500 and 2000; transformation induced plasticity (TRIP) aided bainitic ferrite (TBF) 1000 and 1200; and dual phase (DP) 1000. The number designations of these grades refer to minimum as-received ultimate tensile strengths in MPa. Paint baking was simulated using industrially relevant times and temperatures from 15 to 60 min and 120 to 200 °C, respectively.
X