Refine Your Search

Topic

Author

Search Results

Technical Paper

Using Patterns to Integrate Views in Open Automotive Systems

2001-10-01
2001-01-3396
Automotive product lines promote reuse of software artifacts such as architectures, designs and implementations. System architectures, and especially software architectures, are difficult to create due to the need to support variations. Traditional approaches emphasize the identification and description of generic components, which makes it difficult to support variations among products. The paper proposes an approach for transforming a software architecture to product design through using patterns in a four-way refinement and evolution process. The paper investigates how patterns may be used to verify the conceptual integrity in the view integration procedure to support software sharing in an open automotive system.
Technical Paper

Upgrade Levels of the Bosch ABS

1986-02-01
860508
The Bosch ABS for passenger cars which has been in production since 1978 has been described in numerous publications. Following the gathering of extensive experience with the Bosch ABS and its installation in the different models of passenger car, the concept has been revised with various upgrade levels in order to further optimize braking performance on µ-split road surfaces with different right/left adhesion coefficients, in order further to improve the operation of the system when braking on very slippery road surfaces and also to adapt the control algorithm to four-wheel-drive vehicles with differential locks.
Technical Paper

Towards Establishing Continuous-X Pipeline Using Modular Software-in-the-Loop Test Environments

2021-09-22
2021-26-0412
Software-in-the-Loop (SiL) test environments are the ideal virtual platforms for enabling continuous-development, -integration, -testing -delivery or -deployment commonly referred as Continuous-X (CX) of the complex functionalities in the current automotive industry. This trend especially is contributed by several factors such as the industry wide standardization of the model exchange formats, interfaces as well as architecture definitions. The approach of frontloading software testing with SiL test environments is predominantly advocated as well as already adopted by various Automotive OEMs, thereby the demand for innovating applicable methods is increasing. However, prominent usage of the existing monolithic architecture for interaction of various elements in the SiL environment, without regarding the separation between functional and non-functional test scope, is reducing the usability and thus limiting significantly the cost saving potential of CX with SiL.
Technical Paper

Tool Support for Analyzing and Optimization Methods in Early Brake System Sizing Phases

2000-03-06
2000-01-0442
The manufacturers of passenger cars increasingly assign development and production of complete subsystems to the supplying industry. A brake system supplier has to give predictions about system quality and performance long time before the first prototypical system is built or even before the supplier gets the order for system development. Nowadays, the usage of computer-aided system design and simulation is essential for that task. This article presents a tool designed to support the development process. A special focus will be on how to define quality. A formal definition of quality is provided, illustrated and motivated by two examples.
Technical Paper

Time Triggered CAN (TTCAN)

2001-03-05
2001-01-0073
Connecting microcontrollers, sensors and actuators by several communication systems is state of the art within the electronic architectures of modern vehicles. The communication among these components is widely based on the event triggered communication on the Controller-Area-Network (CAN) protocol. The arbitrating mechanism of this protocol ensures that all messages are transferred according to the priority of their identifiers and that the message with the highest priority will not be disturbed. In the future some mission critical subnetworks within the upcoming generations of vehicle systems, e.g. x-by-wire systems (xbws), will additionally require deterministic behavior in communication during service. Even at maximum bus load, the transmission of all safety related messages must be guaranteed. Moreover it must be possible to determine the point of time when the message will be transmitted with high precision.
Technical Paper

Time Resolved Spray Characterisation in a Common Rail Direct-Injection Production Type Diesel Engine Using Combined Mie/LIF Laser Diagnostics

2003-03-03
2003-01-1040
This study reports on laser-based diagnostics to temporally track the evolution of liquid and gaseous fuel in the cylinder of a direct injection production type Diesel engine. A two-dimensional Mie scattering technique is used to record the liquid phase and planar laser-induced fluorescence of Diesel is used to track both liquid and vaporised fuel. LIF-Signal is visible in liquid and gas phase, Mie scattering occurs only in zones where fuel droplets are present. Distinction between liquid and gaseous phase becomes therefore possible by comparing LIF- and Mie-Signals. Although the information is qualitative in nature, trends of spray evolution are accessible. Within this study a parametric variation of injection pressure, in-cylinder conditions such as gas temperature and pressure as well as piston geometry are discussed. Observations are used to identify the most sensitive parameters and to qualitatively describe the temporal evolution of the spray for real engine conditions.
Technical Paper

The X-By-Wire Concept: Time-Triggered Information Exchange and Fail Silence Support by New System Services

1998-02-23
980555
This paper presents the conceptual model and the fundamental mechanisms for software development in the context of the Brite-EuRam project Safety Related Fault Tolerant Systems in Vehicles (nick-named X-By-Wire). The objective of the X-By-Wire project is to achieve a framework for the introduction of safety related fault tolerant electronic systems without mechanical backup in vehicles. To achieve the required level of fault-tolerance, an X-By-Wire system must be designed as a distributed system comprising a number of fault-tolerant units connected by a reliable real-time communication system. For the communication system, the time-triggered TTP/C real-time communication protocol was selected. TTP/C provides fault-tolerance message transfer, state synchronization, reliable detection of node failures, a global time base, and a distributed membership service. Redundancy is used for masking failures of individual processor nodes and hardware peripherals.
Technical Paper

The Steer-By-Wire Prototype Implementation: Realizing Time Triggered System Design, Fail Silence Behavior and Active Replication with Fault-Tolerance Support

1999-03-01
1999-01-0400
Actual research results in the automotive field show that there is a big potential in increasing active and passive safety by implementing intelligent driver assisting systems. Realizing such safety related system functions requires an electronic system without mechanical or hydraulic backup to de-couple the human interface from the vehicle functions, e.g., steering and braking. Safety critical functions without mechanical backup enforce new requirements in system design. Any faulty behavior of a component within the system must not lead to a malfunction of the overall system. Consequently in the system design fault-tolerance mechanisms in real time must be introduced. Active replication of a functional node is a proper solution to guarantee this real time fault-tolerance. Redundancy management of the functional nodes can be implemented by fail-silent replicas, i.e. a node behaves correctly or does not produce any output at all.
Technical Paper

The Safety-Related Aspect of CARTRONIC

1999-03-01
1999-01-0488
A networking of control systems poses high challenges - in particular for guaranteeing its safety, reliability, and acceptance of the whole integrated system by the car user. CARTRONIC is an open architecture for networking the control systems of a vehicle. The organization of a network has to be set up systematically and with foresight to achieve the advantages of going beyond the sum of the components and to avoid mutual disturbance. Thus the cooperation does not only require well-defined interfaces, but also coordination of the control strategies in the individual components. Additionally, there is an increasing need for ensuring that safety risks are effectively minimized, and for ensuring that no degradation in performance from either a safety or environmental point of view might take place. The paper is focused on the safety-related aspect of CARTRONIC, the safety analysis. The output of the safety analysis is a Safety Architecture.
Technical Paper

Speech-Controlled Wearable Computers for Automotive Shop Workers

2001-03-05
2001-01-0606
Vehicle inspection in repair shops is often still based on paper forms. Information Technology (IT) does not yet support the entire inspection process. In this paper, we introduce a small wearable IT device that is controlled by speech and enables service technicians to wirelessly access relevant data and to perform on-site communication. Users can carry this device in a pocket and use a small headset to enter speech and receive audio feedback. This system provides a completely speech-enabled functionality and thus offers a hands-free operation. After showing the applicability of wearable computers in this environment, we developed a proprietary hardware system consisting of a thin-client connected via a Digital Enhanced Cordless Telecommunications (DECT) link to a standard Personal Computer (PC) that runs a speech engine and hosts a database. Several field tests in garages helped us during the evolution of our prototypes where service technicians critiqued the prototypes.
Technical Paper

Real-Time Software for In-Vehicle Communication

1996-02-01
960117
This paper describes the architecture and the implementation of a software for the communication between networked in-vehicle ECUs. The communication software is based upon a real-time multitasking operating system. The operating system and the communication software form an application-independent platform for the implementation of distributed ECU software. The software architecture consists of several communication layers and a station management module. The communication layers provide network driver, data transfer services and an application interface that is independent of the used network protocol. The station management module is responsible for configuration and initialization of the communication controller, error detection during operation and error handling. The modula r structure of the architecture supports the simple adaptation of the software to different bus systems and communication controllers.
Technical Paper

Progress in Electronic Diesel Control

1984-02-01
840442
The usage of Electronic Diesel Control is increasing with todays stringent emissions regulations. This requirement also necessitates that such systems be versatile to meet the needs of the engine/vehicle manufacturer. EGR, start of injection, and fuel delivery can be electronically controlled. Depending on the design goals of the manufacturer any one or two of these can be controlled for partial and all of them for full Electronic Diesel Control. The development and application process has several critical areas. These include, development of the sensors, application of the different subsystems, failure warning and failure mode operation. All of these must be combined if design goals are to be met. As the capabilities of electronics increase it follows that electronic vehicle systems will also improve. Today impressive results have been achieved with systems that are in full or pilot production.
Technical Paper

Preparing for CARTRONIC - Interface and New Strategies for Torque Coordination and Conversion in a Spark Ignition Engine-Management System

2001-03-05
2001-01-0268
A major trend in modern vehicle control is the increase of complexity and interaction of formerly autonomous systems. In order to manage the resulting network of more and more integrated (sub)systems Bosch has developed an open architecture called CARTRONIC for structuring the entire vehicle control system. Structuring the system in functionally independent components improves modular software development and allows the integration of new elements such as integrated starter/generator and the implementation of advanced control concepts as drive train management. This approach leads to an open structure on a high level for the design of advanced vehicle control systems. The paper describes the integration of the spark-ignition (SI) engine management system (EMS) into a CARTRONIC conform vehicle coordination requiring a new standard interface between the vehicle coordination and the EMS level.
Technical Paper

Pre-crash Sensing - Its Functional Evolution Based on a Platform Radar Sensor

2000-10-03
2000-01-2718
Pre-crash functionality is defined in three functional steps: PRESET, PREFIRE and PREACT. The functional steps are described in the order of growing situation analysis performance requirements and an increasing amount of necessary system application effort. Each functional step defines its own range of view, the so-called virtual barrier. The definition of the virtual barrier is subject to various constraints in respect to sensor configuration and pre-crash performance. A more detailed description of PRESET functionality for frontal pre-crash is given together with a test example. Pre-crash sensing technology uses platform radar sensors. The platform sensors are designed for the integration of all possible functions that rely on sensor information from the close surroundings of the vehicle. This development approach guarantees a high cost efficiency, flexibility and modularity of the sensor system while still guaranteeing the full pre-crash functionality.
Journal Article

Particulate Matter Sensor for On Board Diagnostics (OBD) of Diesel Particulate Filters (DPF)

2010-04-12
2010-01-0307
The emissions legislation in the US and Europe introduces the need for the application of diesel particulate filters (DPF) in most diesel vehicles. In order to fulfill future OBD legislations, which include more stringent requirements on monitoring the functionality of those particulate filters, new sensors besides the differential pressure sensor are necessary. The new sensors need to directly detect the soot emission after DPF and withstand the harsh exhaust gas environment. Based on multi layer ceramic sensor technology, an exhaust gas sensor for particulate matter (EGS-PM) has been developed. The soot-particle-sensing element consists of two inter-digitated comb-like electrodes with an initially infinite electrical resistance. During the sensor operation, soot particles from the exhaust gas are collected onto the inter-digital electrodes and form conductive paths between the two electrode fingers leading to a drop of the electrical resistance.
Technical Paper

OSEKtime: A Dependable Real-Time Fault-Tolerant Operating System and Communication Layer as an Enabling Technology for By-Wire Applications

2000-03-06
2000-01-1051
The new generation of drive-by-wire systems currently under development has demanding requirements on the electronic architecture. Functions such as brake-by-wire or steer-by-wire require continued operation even in the presence of component failures. The electronic architecture must therefore provide fault-tolerance and real-time response. This in turn requires the operating system and the communication layer to be predictable, dependable and composable. It is well known that this properties are best supported by a time-triggered approach. A consortium consisting of German and French car manufacturers and suppliers, which aims at becoming a working group within the OSEK/VDX initiative, the OSEKtime consortium, is currently defining a specification for a time-triggered operating system and a fault-tolerant communication layer.1 The operating system and the communication layer are based on applicable interfaces of the OSEK/VDX standard.
Technical Paper

Network Architecture for CAN

1993-03-01
930004
Serial communication by means of CAN is being used more and more for data transfer between in-vehicle control units to link components of the drive train, body electronics and mobile communication electronics. In order to design distributed electronic systems, software engineers today must not only develop the application software but also supply the communication software to handle the communication hardware, thereby reinventing the wheel with each new application software package. This procedure is inefficient as it leads to hardly reusable special solutions. To avoid incompatibilities between the modules of a distributed system a lot of additional coordination work must be done during the design phase. As a consequence, each new software package is faced with additional costs for the indispensible tests of the communication software. This paper describes a network architecture that has been designed for CAN systems.
Technical Paper

Motor Vehicle Sensors Based on Film-Technology: An Interesting Alternative to Semiconductor Sensors

1987-02-01
870477
The manufacture of semiconductor sensors requires high investment and does not become economically viable until very high production numbers come into consideration. In the case of low production numbers, of the kind that come into consideration for production startups, and in the case of variations e.g. in the measuring range and similar, as may be the case due to the adaptation of models, it may be more viable to employ other techniques which likewise have a high rationalization potential which comes into effect already at low production numbers and which exhibits greater flexibility. The film techniques offer alternative sensor concepts for many measured quantities, whose production is reasonable in price even at smaller production numbers and possesses the necessary alteration flexibility. Besides these, are the advantages of the laser adjustment and the seamless connection of the evaluation electronics. Even possibilities laying within micro-machining technology can be used.
Technical Paper

Microelectronics-Microhybrid Technology

1998-10-19
98C039
The development in electronics for automotive application shows a high speed of improvement over the last 20 years regarding downsizing of all components. This could be achieved despite the harsh environmental conditions we find in vehicles, especially in the engine compartment. Big changes have always required the development of new technologies regarding the production of electronic components. The paper shows technologies which are right now under development to allow the next steps regarding downsizing as well as some examples of possible applications. There is also information regarding the current obstacles for improvements beyond this point as well as basic ideas how to overcome some of them.
Technical Paper

Laser-Based Measurements of Surface Cooling Following Fuel Spray Impingement

2018-04-03
2018-01-0273
A major source for soot particle formation in Gasoline-Direct-Injection (GDI) engines are fuel-rich zones near walls as a result of wall wetting during injection. To address this problem, a thorough understanding of the wall film formation and evaporation processes is necessary. The wall temperature before, during and after fuel impingement is an important parameter in this respect, but is not easily measured using conventional methods. In this work, a recently developed laser-based phosphor thermography technique is implemented for investigations of spray-induced surface cooling. This spatially and temporally resolved method can provide surface temperature measurements on the wetted side of the surface without being affected by the fuel-film. Zinc oxide (ZnO) particles, dispersed in a chemical binder, were deposited onto a thin steel plate obtaining a coating thickness of 17 μm after annealing.
X