Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Test Design and Automated Analysis of Lane Keeping Assistance Systems in Accordance with Euro NCAP Test Protocols

2017-03-28
2017-01-0429
This paper outlines the procedure used to assess the performance of a Lane Keeping Assistance System (LKAS) in a virtual test environment using the newly developed Euro NCAP Lane Support Systems (LSS) Test Protocol, version 1.0, November 2015 [1]. A tool has also been developed to automate the testing and analysis of this test. The Euro NCAP LSS Test defines ten test paths for left lane departures and ten for right lane departures that must be followed by the vehicle before the LKAS activates. Each path must be followed to within a specific tolerance. The vehicle control inputs required to follow the test path are calculated. These tests are then run concurrently in the virtual environment by combining two different software packages. Important vehicle variables are recorded and processed, and a pass/fail status is assigned to each test based on these values automatically.
Technical Paper

Upstream Disturbance Effects on Self-Similarity in the Wake of a DrivAer Model

2023-04-11
2023-01-0014
This study aims to provide an understanding of self-similarity in the turbulent wake generated by a Fastback DrivAer automotive model and assess the impact of upstream disturbances on the wake. The disturbances are generated using a circular cylinder placed five cylinder diameters upstream. Multiple ‘cylinder-model’ positions were tested by offsetting the lateral positioning of the cylinder with respect to the centreline of the model. Data was obtained at cross-planes in the wake going from 25% to 100% car length. Wind tunnel data has been obtained using a total pressure probe rake and a four-hole cobra probe. Data has also been obtained using RANS based simulations with k – ε realisable turbulence model. Mean axial-component velocity profiles were analysed with momentum thickness (θ) and vorticity thickness (δω) used as the scaling parameters. It was seen that self-similarity marginally exists in the wake depending on the upstream conditions and the scaling parameter.
Research Report

Unsettled Issues on Human-Robot Collaboration and Automation in Aerospace Manufacturing

2020-11-30
EPR2020024
This SAE EDGE™ Research Report builds a comprehensive picture of the current state-of-the-art of human-robot applications, identifying key issues to unlock the technology’s potential. It brings together views of recognized thought leaders to understand and deconstruct the myths and realities of human- robot collaboration, and how it could eventually have the impact envisaged by many. Current thinking suggests that the emerging technology of human-robot collaboration provides an ideal solution, combining the flexibility and skill of human operators with the precision, repeatability, and reliability of robots. Yet, the topic tends to generate intense reactions ranging from a “brave new future” for aircraft manufacturing and assembly, to workers living in fear of a robot invasion and lost jobs. It is widely acknowledged that the application of robotics and automation in aerospace manufacturing is significantly lower than might be expected.
Technical Paper

Transient Aerodynamic Characteristics of Simple Vehicle Shapes by the Measurement of Surface Pressures

2000-03-06
2000-01-0876
Transient force and surface pressure data has been measured on a range of simple geometric shapes in order to gain an understanding of the complex time dependent and separated flow around a vehicle when subjected to a crosswind. The experiments were carried out using the Cranfield University model crosswind facility. It is found that the leeward face is the dominant area of transient activity. Maximum and minimum peak yawing moments at gust entry and exit are compared
Technical Paper

Trajectory Optimization of Airliners to Minimize Environmental Impact

2015-09-15
2015-01-2400
With the rapid growth in passenger transportation through aviation projected to continue into the future, it is incumbent on aerospace engineers to seek ways to reduce the negative impact of airliner operation on the environment. Key metrics to address include noise, fuel consumption, Carbon Dioxide and Nitrous Oxide emissions, and contrail formation. The research presented in this paper generates new aircraft trajectories to reduce these metrics, and compares them with typical scheduled airline operated flights. Results and analysis of test cases on trajectory optimization are presented using an in-house aircraft trajectory optimization framework created under the European Clean Sky Joint Technology Initiative, Systems for Green Operation Integrated Technology Demonstrator. The software tool comprises an optimizer core and relatively high fidelity models of the aircraft's flight path performance, air traffic control constraints, propulsion and other systems.
Journal Article

The Introduction of MultiWake - An Adaptable Bluff-Body Wake Emulator for Ground Vehicle Studies

2023-04-11
2023-01-0953
The rise of autonomous technologies may reflect on new vehicle traffic characteristics, likely reducing vehicle-to-vehicle proximity and emerging platooning formations. Energy consumption, stability, and surface contamination are relevant factors that are sensitive to aerodynamic interference while platooning. From the experimental perspective, most wind tunnels were originally designed to host isolated models, and these constraints often limit the investigation of multiple full-body vehicle formations (e.g. test section length, moving ground dimensions, standard testing points). This paper introduces the ‘MultiWake’ model - a parametric bluff-body device based on a morphing concept, which can emulate the aerodynamic wake characteristics of different vehicle classes.
Technical Paper

The Influence of Ground Condition on the Flow Around a Wheel Located Within a Wheelhouse Cavity

1999-03-01
1999-01-0806
A 3D Navier-Stokes CFD model of a wheel located within a wheelhouse cavity has been produced. Both a stationary wheel on a fixed ground and a rotating wheel on a moving ground were considered. Extensive comparisons with the results of a wind tunnel investigation based on the same geometry are presented. These consist of three force coefficients and pressures on the internal faces of the cavity. Comparison with the experimental results gave encouraging agreement. It was found that the rotating wheel produced more drag than the stationary wheel whilst shroud drag decreased when the groundplane was moving compared to when it was stationary.
Journal Article

The Effects of Porosity and Inclination on the Pressure Drop across Porous Screens and Honeycombs Used for Heat Exchanger Simulations in Wind Tunnel Studies

2013-07-15
2012-01-2340
The simulation of heat exchanger air flow characteristics in a sub-scale wind tunnel test requires an accurate representation of the full-scale pressure drop across the element. In practice this is normally achieved using laminations of various porous materials and honeycombs on the basis of experience and ad hoc data. In view of this, a series of measurements of the pressure drop, in both the near and far field, across screens with porosity (β) in the range 0.41 ≺ β ≺ 0.76 are reported. The aim being to establish a relationship between the porosity and the pressure drop characteristics of a given material at various angles of inclination to the free-stream flow. Furthermore, the effect of screen depth was investigated using honeycombs. This data will facilitate detailed design and accurate representation of the flow characteristics at sub scale.
Journal Article

Robustness Testing of Real-Time Automotive Systems Using Sequence Covering Arrays

2013-04-08
2013-01-1228
Testing real-time vehicular systems challenges the tester to design test cases for concurrent and sequential input events, emulating unexpected user and usage profiles. The vehicle response should be robust to unexpected user actions. Sequence Covering Arrays (SCA) offer an approach which can emulate such unexpected user actions by generating an optimized set of test vectors which cover all possible t-way sequences of events. The objective of this research was to find an efficient nonfunctional sequence testing (NFST) strategy for testing the robustness of real-time automotive embedded systems measured by their ability to recover (prove-out test) after applying sequences of user and usage patterns generated by combinatorial test algorithms, considered as “noisy” inputs. The method was validated with a case study of an automotive embedded system tested at Hardware-In-the-Loop (HIL) level. The random sequences were able to alter the system functionality observed at the prove-out test.
Technical Paper

Recognizing Driver Braking Intention with Vehicle Data Using Unsupervised Learning Methods

2017-03-28
2017-01-0433
Recently, the development of braking assistance system has largely benefit the safety of both driver and pedestrians. A robust prediction and detection of driver braking intention will enable driving assistance system response to traffic situation correctly and improve the driving experience of intelligent vehicles. In this paper, two types unsupervised clustering methods are used to build a driver braking intention predictor. Unsupervised machine learning algorithms has been widely used in clustering and pattern mining in previous researches. The proposed unsupervised learning algorithms can accurately recognize the braking maneuver based on vehicle data captured with CAN bus. The braking maneuver along with other driving maneuvers such as normal driving will be clustered and the results from different algorithms which are K-means and Gaussian mixture model (GMM) will be compared.
Technical Paper

Preview based Vehicle Steering Control using Neural Networks

2013-04-08
2013-01-0409
The motion of a vehicle along a desired path is possible due to steering action of the driver. Hence, vehicle dynamics and control simulations should take into consideration the action of the driver. This work presents a preview based vehicle steering controller using Neural Networks which can be used in the vehicle lateral dynamics simulations. The training data for the Neural Network is being obtained using a steering controller from the existing literature and its gains are determined using Optimization. Three different architectures are being designed and conclusions are presented. These Neural Network models are validated by testing against real track data.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

On the Use of Reference Models in Automotive Aerodynamics

2004-03-08
2004-01-1308
In automotive aerodynamics much use has been made of generic reference models for research and correlation. Research work has been conducted mostly on small-scale versions of the models to investigate flow regimes and aerodynamic force and moment characteristics while correlation tests have made use of full-scale models to compare results between wind tunnels. More recently reference geometries have also been used as test cases in the validation of computational techniques. This paper reviews the design characteristics and use of several key reference models. The advantages and disadvantages of these designs and also the applicability of the results in providing guidelines for the development of production vehicles are discussed. It is advocated that when researchers choose to use simple models, existing reference geometries should be employed.
Technical Paper

On the Aerodynamics of an Enclosed-Wheel Racing Car: An Assessment and Proposal of Add-On Devices for a Fourth, High-Performance Configuration of the DrivAer Model

2018-04-03
2018-01-0725
A modern benchmark for passenger cars - DrivAer model - has provided significant contributions to aerodynamics-related topics in automotive engineering, where three categories of passenger cars have been successfully represented. However, a reference model for high-performance car configurations has not been considered appropriately yet. Technical knowledge in motorsport is also restricted due to competitiveness in performance, reputation and commercial gains. The consequence is a shortage of open-access material to be used as technical references for either motorsport community or academic research purposes. In this paper, a parametric assessment of race car aerodynamic devices are presented into four groups of studies. These are: (i) forebody strakes (dive planes), (ii) front bumper splitter, (iii) rear-end spoiler, and (iv) underbody diffuser.
Technical Paper

New Unconventional Airship Concept by Morphing the Lenticular Shape

2015-09-15
2015-01-2577
The aim of this paper is to develop a new concept of unconventional airship based on morphing a lenticular shape while preserving the volumetric dimension. Lenticular shape is known to have relatively poor aerodynamic characteristics. It is also well known to have poor static and dynamic stability after the certain critical speed. The new shape presented in this paper is obtained by extending one and reducing the other direction of the original lenticular shape. The volume is kept constant through the morphing process. To improve the airship performance, four steps of morphing, starting from the lenticular shape, were obtained and compared in terms of aerodynamic characteristics, including drag, lift and pitching moment, and stability characteristics for two different operational scenarios. The comparison of the stability was carried out based on necessary deflection angle of the part of tail surface.
Journal Article

New Guidelines for Implementation of Structural Health Monitoring in Aerospace Applications

2013-09-17
2013-01-2219
The first cross-industry guidelines for the implementation of structural health monitoring for aerospace applications have been created as a SAE International Aerospace Recommended Practices document: SAE ARP 6461 ‘Guidelines for Implementation of Structural Health Monitoring on Fixed Wing Aircraft’ [1]. These guidelines have brought together manufacturers, operators / users, systems integrators, regulators, technology providers and researchers to produce information on the integration of SHM into aircraft maintenance procedures, generic requirements and advice on validation, verification and airworthiness. The take-up of SHM in the aerospace industry has been slow, in part due to the lack of accepted industry practices surrounding not just the technology itself (sensors and sensor systems) but also the associated issues arising from the introduction of new methods into aircraft maintenance.
Technical Paper

Integration Issues for Vehicle Level Distributed Diagnostic Reasoners

2013-09-17
2013-01-2294
In today's aircraft the diagnostic and prognostic systems play a crucial part in aircraft safety while reducing the operating and maintenance costs. Aircraft are very complex in their design and require consistent monitoring of systems to establish the overall vehicle health status. Most diagnostic systems utilize advanced algorithms (e.g. Bayesian belief networks or neural networks) which usually operate at system or sub-system level. The sub-system reasoners collect the input from components and sensors to process the data and provide the diagnostic/detection results to the flight advisory unit. Several sources of information must be taken into account when assessing the vehicle health, to accurately identify the health state in real time. These sources of information are independent system-level diagnostics that do not exchange any information/data with the surrounding systems.
Technical Paper

Improving the Aerodynamic Stability of a Practical, Low Drag, Aero-Stable Vehicle

2000-04-02
2000-01-1577
The aerodynamic drag of future low emission vehicles will need to be low. Unfortunately, vehicle shapes that result in low drag coefficients - of the order of 0.15 - are often aerodynamically unstable in crosswinds. The addition of wheels, transmission, radiators, suspension, steering, brakes, air ducts and wing mirrors can easily increase this drag coefficient to 0.24 and above and produce an undesirable lift distribution. The Aero-Stable Carbon Car (ASCC) is a research project, in conjunction with industrial partners, to design and build a practical 3 to 4 seat low drag car (CD less than 0.20) with an acceptable lift distribution (front to rear) which is also stable in crosswinds and in yaw through a series of low speed wind tunnel tests performed in the Cranfield College of Aeronautics 8′ × 6′ wind tunnel facility.
Technical Paper

Flyaway Tooling for Higher Quality, More Cost-Effective, Aerostructure

1998-06-02
981843
Co-production of aircraft is resulting in demands for higher standards of manufacturing quality to ensure that parts and sub-assemblies from different companies and countries are compatible and interchangeable. As a result the existing method of building aerostructure using large numbers of dedicated manufacturing jigs and assembly tools, is now seen as being commercially undesirable, and technologically flawed. This paper considers an alternative, potentially more cost-effective, approach that embraces digital design, manufacturing, and inspection techniques, and in which reference and tooling features are incorporated into the geometry of the component parts. Within the aerospace industry this technology is known as ‘Flyaway Tooling’.
Technical Paper

Experimental Simulation of Natural-Like Snow Conditions in the Rail Tec Arsenal (RTA) Icing Wind Tunnel

2023-06-15
2023-01-1407
The simulation of natural-like snow conditions in a controlled environment such as an Icing Wind Tunnel (IWT) is a key component for safe, efficient and cost-effective design and certification of future aircraft and rotorcraft. Current capabilities do not sufficiently match the properties of natural snow, especially in terms of size and morphology. Within the Horizon 2020 project ICE GENESIS, a new technology has been developed aiming to better recreate natural snowflakes. The focus of the newly developed system was the generation of falling snow in a temperature range of +1°C to -4°C. Ground measurements and flight test campaigns have been performed to better characterize these conditions and provide requirements for wind tunnel facilities. The calibration results of the new snow generation system as well as snow accretion data on a NACA0012 test article with a chord length of 0.377 m are presented.
X