Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Lubricity Requirement of Low Sulfur Diesel Fuels

1994-10-01
942015
An engine rig test and a scuffing BOCLE test have been used to investigate the lubricity of low sulfur diesel fuels and its relationship with unit injector wear in heavy duty diesel engines. The rig test effectively ranks 11 selected fuels/fluids according to their actual performance. The scuffing BOCLE test correlates with the rig test by showing the same ranking capability, and it is easy to perform. A similar correlation has been established using ISO reference fuels. The scuffing BOCLE test has been used to study 37 fuels randomly sampled from the field. The data shows that there is indeed a reduction in lubricity of low sulfur fuels. The variation in lubricity of low sulfur fuels is also much greater than high sulfur fuels. Data in this study shows that transition from good to poor lubricity usually occurs between 2500 to 3000 grams in the scuffing BOCLE.
Technical Paper

Scuff Resistance Rig Test for Piston Ring Face Coatings

1997-02-24
970819
A laboratory method has been developed to rank the scuff resistance of piston ring coatings. This method employs a standard wear test apparatus with a specially designed sample holder. Scuff resistance of electrolytic chrome, thermal spray and physical vapor deposition (PVD) face coatings have been examined. Based on this method, examined PVD coatings produced the highest scuff resistance of all the tested face coatings.
Technical Paper

Prediction of Radiated Noise from Engine Components Using the BEM and the Rayleigh Integral

1997-05-20
971954
This paper examines the feasibility of using the boundary element method (BEM) and the Rayleigh integral to assess the sound radiation from engine components such as oil pans. Two oil pans, one cast aluminum and the other stamped steel, are used in the study. All numerical results are compared to running engine data obtained for each of these oil pans on a Cummins engine. Measured running-engine surface velocity data are used as input to the BEM calculations. The BEM models of the oil pains are baffled in various ways to determine the feasibility of analyzing the sound radiated from the oil pan in isolation of the engine. Two baffling conditions are considered: an infinite baffle in which the edge of the oil pan are attached to an infinite, flat surface; and a closed baffle in which the edge of the oil pan is sealed with a rigid structure. It is shown that either of these methods gives satisfactory results when compared to experiment.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Technical Paper

HVOF Cermet Coatings for High Horse Power Diesel Engines

1997-02-24
970817
High Velocity Oxygen Fuel sprayed face coatings have shown great promise for piston rings used for High Power Density Diesel Engines. Various coatings have been tested on both wear test rigs and in engines. A highly dense HVOF cermet coating was developed with reasonable crack resistance during service. The HVOF coated piston rings wore three to six times lower than chrome plating. Cylinder liner (counter face) wear was found to be one to three times higher than chrome. However, engine oil consumption and blow by were within normal values. The HVOF coating is considered to be an excellent replacement for chrome plating. The coating process is more environmentally friendly than the chrome plating process. Also, the coating has potentially lower or equivalent production cost when compared to chrome.
Technical Paper

Exploring PVD Coatings for Cylinder Liner Applications

2001-03-05
2001-01-0573
A number of wear resistant coatings has been developed using physical vapor deposition(PVD) process. However this coating process has not yet been widely used in the automotive industry. The purpose of this work was to evaluate thin PVD coatings such as diamond like carbon doped with tungsten (W-DLC), molybdenum-disulfide doped with aluminum (MoS2-Al), and chrome nitride (CrN). Some of these coatings were previously found to have low friction, high wear resistance, or both when tested in unlubricated conditions. In the present work, the experiments were conducted using a Cameron-Plint apparatus in lubricated conditions. The ring counterfaces used were Cr-plated and gas-nitrided compression rings. Our data also indicated that some PVD coatings with thicknesses in the same order of magnitude as the surface roughness of the liners did show some improvement in liner wear resistance. The suitability of thin coatings for liner applications needs additional study.
X