Refine Your Search

Topic

Search Results

Technical Paper

Visual Thermodynamics: Processes in Log(p)-Log(T) Space

1999-03-01
1999-01-0516
A new technique has been developed to allow engine performance engineers to visualize and communicate a wide range of thermodynamic issues and constraints in a single diagram. The technique, called Visual Thermodynamics, is the presentation of engine cycle data in logarithmic pressure and logarithmic temperature space, log(p)-log(T). Visual Thermodynamics is a thought organization and concept visualization tool. It is not intended to provide high-precision numerical results. The utility of the technique is in comparing engine concepts, assessing trends, identifying boundaries of operation and building a general understanding of engine system behavior. The technique provides a powerful mechanism for communicating engine thermodynamic issues to both technical and non-technical colleagues.
Technical Paper

Vechicle Testing of Cummins Turbocompound Diesel Engine

1981-02-01
810073
Two turbocompound diesel engines were assembled and dynamometer tested in preparation for vehicle tests. Both engines met the 1980 California gaseous emission requirement and achieved a minimum BSFC of .313 lb/bhp-hr and a BSFC at rated conditions of .323 lb/bhp-hr. These engines were then installed in Class VIII heavy-duty vehicles to determine the fuel consumption and performance characteristics. Fuel consumption testing showed a 14.8% improvement for the turbocompound engine in comparison to a production NTC-400 used as a baseline. The turbocompound engine also achieved lower noise levels, improved drive-ability, improved gradeability, and moderately increased engine retardation. The second turbocompound engine was placed in commercial service and accumulated 50,000 miles on a cross-country route without malfunction. Tank mileage revealed a 15.92% improvement over a production NTCC-400 which was operating on the same route.
Technical Paper

The Piston Ring Shape and Its Effects on Engine Performance

1996-02-01
960052
The paper presents the latest research results on the piston ring free shape. A new free shape measurement method with optical gauging was developed. Three numerical models to compute the contact force distribution of piston ring were developed using finite element analysis (FEA). These numerical methods have been compared each other, and validated with the experimental results of ring deformation in a ring gage. The contact force distribution of a piston ring at working condition was also studied. It consists of the ring thermal boundary conditions (RTBC) validation, 3-D FEA thermal analysis and thermal contact force computation based on validated wire-cable element model. The RTBC for heavy duty diesel engine has been validated for the first time using a CUMMINS L10 engine test. Three different free shapes have been tested. The wear band measurements of tested rings all show tremendous improvements over the standard top ring.
Technical Paper

The Influence of Bowl Offset on Air motion in a Direct Injection Diesel Engine

1988-10-01
881611
The influence of bowl offset on motored mean flow and turbulence in a direct injection diesel engine has been examined with the aid of a multi-dimensional flow code. Results are presented for three piston geometries. The bowl geometry of each piston was the same, while the offset between the bowl and the cylinder axis was varied from 0.0 to 9.6% of the bore. The swirl ratio at intake valve closing was also varied from 2.60 to 4.27. It was found that the angular momentum of the air at TDC was decreased by less than 8% when the bowl was offset. Nevertheless, the mean (squish and swirl) flows were strongly affected by the offset. In addition, the distribution of turbulent kinetic energy (predicted by the k-e model) was modified. Moderate increases (10% or less) in mass averaged turbulence intensity at TDC with offset were observed. However, the TDC turbulent diffusivity was changed less than 3% due to a slight decrease in turbulent length scale with increasing offset.
Technical Paper

The Effects of Emulsified Fuels and Water Induction on Diesel Combustion

1970-02-01
700736
Water was inducted with the intake air and injected emulsified with the fuel, in a conventional single cylinder D.I. diesel engine. The major effects of inducted water were an increase in ignition delay, and reduction in the oxides of nitrogen and smoke at a constant fuel/air ratio. When the water was emulsified with the fuel, the ignition delay increased so much that no benefits were obtained except for a reduction in smoke. The results are compared to a similar study on an engine with the “M” combustion system. The major differences between the results obtained with the two combustion systems are attributed to the differences in the ignition delay caused by the water addition.
Technical Paper

The Effect of Raising Specific Output of a Highly Rated DI Diesel Truck Engine on its Performance and Emissions

1989-02-01
890263
A study was undertaken to establish what happens to engine emissions, and to turbocharger and injection pressure requirements, as the specific output is raised. For any given engine package, increasing specific output increases injection pressures while reducing air/fuel ratios. Thus, if the highly rated engine must satisfy the same design constraints, then raising the engine operating torque by only 10% resulted in more than 30% increase in total particulates! However, the same emission levels may be maintained if increases in specific output are accompanied by changes to engine design so as to maintain the air-fuel mixing parameters, specifically air/fuel ratio and injection pressures, throughout the entire engine operating conditions.
Technical Paper

The Cummins Signature 600 Heavy-Duty Diesel Engine

1998-02-23
981035
Design and development of the Cummins Signature 600, a new high horsepower dual overhead cam truck diesel engine, has been completed. The Signature 600 product system includes an all-new engine, controls, fuel system, and business information systems. During product definition, particular emphasis was placed on target markets, customer input to design, engineering and manufacturing processes, concurrent engineering and extensive mechanical and thermal analyses. Cummins Signature 600 fulfills the needs of Owner-Operator and Premium Fleet linehaul trucking businesses.
Technical Paper

Test Cell Simulation of the Driveby Noise Test

1987-08-01
870967
Diesel engine manufacturers have traditionally done most engine noise development work under steady: state operating conditions. However, truck driveby noise tests are acceleration tests, and engines exhibit different noise behavior under accelerating conditions. Acceleration noise can be affected by engine performance parameters which may have no influence on steady state noise levels. In this study, a test cell simulation of the truck driveby procedure has been developed and evaluated. Test cell simulation and truck driveby results are compared for a naturally-aspirated and a turbocharged engine. This simulation procedure has been shown to predict reliably results measured in vehicles. As a result, the simulation can be used to evaluate engine modifications during the development process without requiring a vehicle installation.
Technical Paper

Techniques of Structural Vibration Analysis Applied to Diesel Engine Noise Reduction

1975-02-01
750835
This paper presents several techniques used to define quantitatively the problem of excessive noise through engine structural vibration. These techniques include both operating engine tests and bench tests. In addition, analytical techniques are shown which give a better understanding of how the critical components within the engine cause this vibration. Through the use of analytical and experimental techniques, examples illustrate practical solutions for diesel engine noise reduction.
Technical Paper

Real Time Captivation Detection Method

1996-02-01
960878
Cavitation corrosion is a very complex phenomenon that is governed by a formidable amount of factors and parameters. The phenomenon is a multi-disciplinary one which involves several aspects of physical sciences and engineering. This process is a slow progressive phenomenon with its detrimental effects being felt after severe damage has already occurred. A real time detection method for the severity of fluid cavitation and bubble collapse is described. The results are correlated to dynamic instantaneous pressure fluctuation measurements. The method is fast, reliable, and less restrictive of the sensing location. It has been tested and verified through a specially designed cavitation test rig and instrumentation setup. The method can be used for cavitation studies on ultrasonic bench rig tests and for cavitation measurements on running engines. The method was used to shed some light on characteristic cavitation differences between water and glycol which is used in engine coolants.
Technical Paper

Performance and Regeneration Characteristics of a Cellular Ceramic Diesel Particulate Trap

1982-02-01
820272
Fundamental aspects of performance and regeneration of a porous ceramic particulate trap are described. Dimensionless correlations are given for pressure drop vs. flow conditions for clean and loaded traps. An empirical relationship between estimated particulate deposits and a loading parameter that distinguishes pressure drop changes due to flow variations from particulate accumulation is presented. Results indicate that trapping efficiencies exceed 90% under most conditions and pressure drop doubles when particulate accumulation occupies only 5% of the available void volume. Regeneration was achieved primarily by throttling the engine intake air. For various combinations of initial loading level, trap inlet temperature and oxygen concentration, it was found that regeneration rate peaked after 45 seconds from initiation.
Technical Paper

Modeling of Transient Evaporating Spray Mixing Processes-Effect of Injection Characteristics

1984-02-01
840226
Some results of a systematic numerical study of the effects of injection characteristics on the transient evaporating spray mixing process in a diesel like environment are presented. The study uses an existing two-dimensional stochastic thick spray model. It was found that, for a fixed injection quantity, changes in the nozzle hole number, nozzle hole size, and injection duration changed significantly the evaporation and mixing processes of a transient evaporating spray. In particular, It is found that, for a fixed nozzle geometry, reduced injection duration is most effective in increasing the mixing rate. The results also show that the injection rate shape greatly influences the mixing process of a transient spray, especially during the injection period. After the end of injection, the global effect of injection rate shape can be characterized by the mass averaged injection pressure alone. The higher the mass averaged injection pressure, the faster the mixing rate.
Technical Paper

Lube Oil Filtration Effect on Diesel Engine Wear

1971-02-01
710813
A series of comparative evaluation tests to determine the effect of various full-flow and combination full-flow and bypass filter systems on diesel engine piston ring and crankshaft bearings was made using radioactive tracer wear measurement and component weight loss techniques. The results of these tests indicate that bypass lube oil filtration combined with good full-flow lube oil filtration result in lowest engine wear rate and lowest total cost for the engine user.
Technical Paper

Field Evaluation of Oil Analysis as a Maintenance Tool

1977-02-01
770644
The effectiveness of using oil analysis as a routine maintenance tool in a field service environment was investigated. A line-haul, inter-city and two mining fleets were studied. The fleets were split into sample and control groups to obtain a standard of comparison. Oil analysis was found to be most effective for detecting leaks in the air intake system and coolant and fuel in the oil. Implementation problems such as irregular sampling, sample contamination, and lack of follow-up hindered its effectiveness in some of the fleets studied. A comparison of the maintenance costs of the sample and control groups in all the fleets studied showed oil analysis was not effective in significantly lowering maintenance costs.
Technical Paper

Experimental and Analytical Studies of Cylinder Head Cooling

1993-04-01
931122
Previous work on the cooling jackets of the Cummins L10 engine revealed flow separation, and low coolant velocities in several critical regions of the cylinder head. The current study involved the use of detailed cooling jacket temperature measurements, and finite element heat transfer analysis to attempt the identification of regions of pure convection, nucleate boiling, and film boiling. Although difficult to detect with certainty, both the measurements and analysis pointed strongly to the presence of nucleate boiling in several regions. Little or no evidence of film boiling was seen, even under very high operating loads. It was thus concluded that the regions of seemingly inadequate coolant flow remained quite effective in controlling cylinder head temperatures. The Cummins L10 upon which this study has focused is an in-line six cylinder, four-stroke direct injection diesel engine, with a displacement of 10 liters.
Technical Paper

Experimental Results on the Effect of Piston Surface Roughness and Porosity on Diesel Engine Combustion

1996-02-01
960036
Measurements have been made to determine the effect of piston crown surface properties on combustion. Back-to-back engine tests were conducted to compare surface modified pistons to a production piston. Each modified piston was found to prolong combustion duration. Porous coatings and a non porous, roughened piston were observed to increase fuel consumption. Increase in fuel consumption was determined to be the result of increased heat release duration. The data show surface roughness alone affects the duration of heat release. The shift in magnitude of the centroid of heat release was similar to the shift observed in insulated engine experiments.
Technical Paper

Exhaust Characteristics of the Automotive Diesel

1966-02-01
660550
The production of pollutants and an increasing need for pollution management are an inevitable concomitant of a society with a high standard of living. The automotive diesel engine is used more than any other type of engine for transporting freight over highways. Two kinds of pollution to be considered with regard to the diesel engine are the dark exhaust smoke and odor, of which the public is quite cognizant, and the less obvious but possibly toxic carbon monoxide, oxides of nitrogen, unburned hydrocarbons, and trace compounds of other toxic materials. This paper discusses sampling, measurement techniques, and established standards for exhaust smoke and odor. Examination of diesel exhaust shows it to be less offensive in terms of harmful effects than the invisible exhaust from other types of engines. The major problem is exhaust color and odor.
Technical Paper

Effects of Injection Timing and Exhaust Gas Recirculation on Emissions from a D.I. Diesel Engine

1981-10-01
811234
Some results of a systematic study on the effects of injection timing retard and exhaust gas recirculation on emissions from a D.I. diesel engine are presented. The factors investigated include engine speed, fuel rate, injection timing, injection pressure, intake charge oxygen concentration, and type of diluent. The detailed mechanisms governing the formation and control of nitric oxide are studied analytically, using a previously developed diesel combustion model based on transient fuel-air mixing and Zeldovich nitric oxide reaction mechanisms. The results show that exhaust gas recirculation and injection timing retard are both effective in reducing nitric oxide emissions at the expense of increasing smoke. The reduction of nitric oxide with exhaust gas recirculation and injection timing retard is mainly related to the decrease of local temperature and local atomic oxygen concentration.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

1997-05-01
971707
Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

Diesel Engine Noise Reduction Hardware for Vehicle Noise Control

1973-02-01
730681
A range of noise reduction hardware is described for three production engine models, as well as the rationale for selecting noise reduction methods. Noise reductions up to 6 dB(A) were achieved with this hardware in the test cell. In many cases the modifications are more effective in vehicles. The success of the hardware in reducing overall vehicle noise is illustrated.
X