Refine Your Search

Topic

Author

Search Results

Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Technical Paper

Vehicle Dynamometer for Hybrid Truck Development

2002-11-18
2002-01-3129
A special vehicle dynamometer has been developed that allows engineers to evaluate driveline components and control algorithms for advanced, electrically-assisted drive systems on commercial vehicles. This dynamometer allows objective measurements of performance, fuel economy, and exhaust emissions, while the full vehicle is operated over a specified driving cycle. This system can be used to exercise the electric motor, engine, transmission and battery systems on Medium Duty Hybrid Trucks - in regeneration as well as power mode - all indoors and in a controlled, repeatable environment. This paper will provide descriptions of the operating goals, control features, and results of testing with this dynamometer. Once the various parameters have been optimized for fuel and emissions performance in this facility, the vehicle can be evaluated where it counts - on the road.
Journal Article

Transient On-Road Emission Reduction of an LNT + SCR Aftertreatment System

2008-10-07
2008-01-2641
An LNT + SCR diesel aftertreatment system was developed in order to meet the 2010 US HD EPA on-road, and tier 4 US HD EPA off-road emission standards. This system consists of a fuel reformer (REF), lean NOx trap (LNT), catalyzed diesel particulate filter (DPF), and selective catalytic reduction (SCR) catalyst arranged in series to reduce tailpipe nitrogen oxides (NOx) and particulate matter (PM). This system utilizes a REF to produce hydrogen (H2), carbon monoxide (CO) and heat to regenerate the LNT, desulfate the LNT, and actively regenerate the DPF. The NOx stored on the LNT is reduced by the H2 and CO generated in the REF converting it to nitrogen (N2) and ammonia (NH3). NH3, which is normally an undesired byproduct of LNT regeneration, is stored in the downstream SCR which is utilized to further reduce NOx that passes through the LNT. Engine exhaust PM is filtered and trapped by the DPF reducing the tailpipe PM emissions.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Journal Article

The Impact of Ammonium Nitrate Species on Low Temperature NOx Conversion Over Cu/CHA SCR Catalyst

2017-03-28
2017-01-0953
Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
Technical Paper

The Effect of Heavy-Duty Diesel Cylinder Deactivation on Exhaust Temperature, Fuel Consumption, and Turbocharger Performance up to 3 bar BMEP

2020-04-14
2020-01-1407
Diesel Cylinder Deactivation (CDA) has been shown in previous work to increase exhaust temperatures, improve fuel efficiency, and reduce engine-out NOx for engine loads up to 3 bar BMEP. The purpose of this study is to determine whether or not the turbocharger needs to be altered when implementing CDA on a diesel engine. This study investigates the effect of CDA on exhaust temperature, fuel efficiency, and turbocharger performance in a 15L heavy-duty diesel engine under low-load (0-3 bar BMEP) steady-state operating conditions. Two calibration strategies were evaluated. First, a “stay-hot” thermal management strategy in which CDA was used to increase exhaust temperature and reduce fuel consumption. Next, a “get-hot” strategy where CDA and elevated idle speed was used to increase exhaust temperature and exhaust enthalpy for rapid aftertreatment warm-up.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Technical Paper

Switching Roller Finger Follower Meets Lifetime Passenger Car Durability Requirements

2012-09-10
2012-01-1640
An advanced variable valve actuation (VVA) system is characterized following end-of-life testing to enable fuel economy solutions for passenger car applications. The system consists of a switching roller finger follower (SRFF) combined with a dual feed hydraulic lash adjuster and an oil control valve that are integrated into a four cylinder gasoline engine. The SRFF provides discrete valve lift capability on the intake valves. The motivation for designing this type of VVA system is targeted to improve fuel economy by reducing the air pumping losses during part load engine operation. This paper addresses the durability of a SRFF for meeting passenger car durability requirements. Extensive durability tests were conducted for high speed, low speed, switching, and cold start operation. High engine speed test results show stable valvetrain dynamics above 7000 engine rpm. System wear requirements met end-of-life criteria for the switching, sliding, rolling and torsion spring interfaces.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Journal Article

Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals

2011-04-12
2011-01-1157
Production NO sensors have a strong cross-sensitivity to ammonia which limits their use for closed-loop SCR control and diagnostics since increases in sensor output can be caused by either gas component. Recently, Ammonia/NO Ratio (ANR) perturbation methods have been proposed for determining the dominant component in the post-SCR exhaust as part of the overall SCR control strategy, but these methods or the issue of sensor cross-sensitivity have not been critically evaluated or studied in their own right. In this paper the dynamic sensor direct- and cross-sensitivities are estimated from experimental FTIR data (after compensating for the dynamics of the gas sampling system) and compared to nominal values provided by the manufacturer. The ANR perturbation method and the use of different input excitations are then discussed within an analytical framework, and applied to experimental data from a large diesel engine.
Technical Paper

Simulated Performance of a Diesel Aftertreatment System for U.S. 2010 Application

2006-10-31
2006-01-3551
An aftertreatment system for medium and heavy-duty diesel engines has been modeled for U.S. 2010 application. The aftertreatment system is comprised of a lean NOx trap (LNT) and an ammonia selective catalytic reduction (SCR) catalyst in series. Descriptions of the fully transient, one-dimensional LNT and SCR models are presented. The models simulate flow, heat transfer, and chemical reactions in the LNT and SCR catalysts. The models can be used to predict catalyst performance over a range of operating conditions and driving cycles. Simulated results of NOx conversion efficiency, species concentrations, and gas temperature were compared to experimental data for a 13-mode test. The model results showed the LNT-SCR model predicts system performance with reasonable accuracy in comparison to experimental data. Therefore, two model applications were investigated. First, LNT and SCR volumes were varied to examine the effect on NOx conversion efficiency and NH3 production.
Technical Paper

Selective Catalytic Reduction On-Board Diagnostics: Past and Future Challenges

2005-11-01
2005-01-3603
Heavy-duty diesel on-board diagnostics (OBD) regulations are being phased in around the world with varying degrees of similarity. This is occurring at a time when heavy-duty diesel emission regulations are driving complex and elaborate emission control strategies. Unique circumstances led the European heavy-duty diesel market to adopt selective catalytic reduction (SCR) as the primary solution for meeting strict Euro 4 emission levels. This paper is a review of the challenges of diagnosing an SCR system based on the Euro 4 OBD regulation and considers the future challenges of SCR diagnostics that lie ahead in the North American market.
Technical Paper

Quantification of Platooning Fuel Economy Benefits across United States Interstates Using Closed-Loop Vehicle Model Simulation

2021-02-25
2021-01-5028
Evaluation of the platooning legislative space suggests a limited near-term opportunity for autonomous vehicles as currently only nine states have platooning and autonomous favorable legislations. An extensive closed-loop vehicle model simulation was conducted to quantify two-truck platooning fuel economy entitlement benefits across all United States (US) interstate routes (I-xx) spanning over 40,000 miles as compared to a single truck. A simultaneous study was carried out to identify the density of Class 8 heavy-duty trucks on these interstates, using the Freight Analysis Framework (FAF) 4 database. These two studies were combined to ascertain interstates that foresee the least fuel consumption due to platooning and thus identifying states with the most platooning benefits. Identification of states with most platooning benefits provides realistic data to push for autonomous driving and platooning legislations.
Technical Paper

Quantification of Diesel Engine Vibration Using Cylinder Deactivation for Exhaust Temperature Management and Recipe for Implementation in Commercial Vehicles

2018-04-03
2018-01-1284
Commercial vehicles require continual improvements in order to meet fuel emission standards, improve diesel aftertreatment system performance and optimize vehicle fuel economy. Aftertreatment systems, used to remove engine NOx, are temperature dependent. Variable valve actuation in the form of cylinder deactivation (CDA) has been shown to manage exhaust temperatures to the aftertreatment system during low load operation (i.e., under 3-4 bar BMEP). During cylinder deactivation mode, a diesel engine can have higher vibration levels when compared to normal six cylinder operation. The viability of CDA needs to be implemented in a way to manage noise, vibration and harshness (NVH) within acceptable ranges for today’s commercial vehicles and drivelines. A heavy duty diesel engine (inline 6 cylinder) was instrumented to collect vibration data in a dynamometer test cell.
Technical Paper

Phenomenological Investigations of Mid-Channel Ash Deposit Formation and Characteristics in Diesel Particulate Filters

2019-04-02
2019-01-0973
Accumulation of lubricant and fuel derived ash in the diesel particulate filter (DPF) during vehicle operation results in a significant increase of pressure drop across the after-treatment system leading to loss of fuel economy and reduced soot storage capacity over time. Under certain operating conditions, the accumulated ash and/or soot cake layer can collapse resulting in ash deposits upstream from the typical ash plug section, henceforth termed mid-channel ash deposits. In addition, ash particles can bond (either physically or chemically) with neighboring particles resulting in formation of bridges across the channels that effectively block access to the remainder of the channel for the incoming exhaust gas stream. This phenomenon creates serious long-term durability issues for the DPF, which often must be replaced. Mid-channel deposits and ash bridges are extremely difficult to remove from the channels as they often sinter to the substrate.
Journal Article

Performance of a Fuel Reformer, LNT and SCR Aftertreatment System Following 500 LNT Desulfation Events

2009-10-06
2009-01-2835
An advanced exhaust aftertreatment system is characterized following end-of-life catalyst aging to meet final Tier 4 off-highway emission requirements. This system consists of a fuel dosing system, mixing elements, fuel reformer, lean NOx trap (LNT), diesel particulate filter (DPF), and a selective catalytic reduction (SCR) catalyst. The fuel reformer is used to generate hydrogen (H2) and carbon monoxide (CO) from injected diesel fuel. These reductants are used to regenerate and desulfate the LNT catalyst. NOx emissions are reduced using the combination of the LNT and SCR catalysts. During LNT regeneration, ammonia (NH3) is intentionally released from the LNT and stored on the downstream SCR catalyst to further reduce NOx that passed through the LNT catalyst. This paper addresses system durability as the catalysts were aged to 500 desulfation events using an off-highway diesel engine.
Technical Paper

PIV Measurements of In-Cylinder Flow in a Four-Stroke Utility Engine and Correlation with Steady Flow Results

2004-09-27
2004-32-0005
Large-scale flows in internal combustion engines directly affect combustion duration and emissions production. These benefits are significant given increasingly stringent emissions and fuel economy requirements. Recent efforts by engine manufacturers to improve in-cylinder flows have focused on the design of specially shaped intake ports. Utility engine manufacturers are limited to simple intake port geometries to reduce the complexity of casting and cost of manufacturing. These constraints create unique flow physics in the engine cylinder in comparison to automotive engines. An experimental study of intake-generated flows was conducted in a four-stroke spark-ignition utility engine. Steady flow and in-cylinder flow measurements were made using three simple intake port geometries at three port orientations. Steady flow measurements were performed to characterize the swirl and tumble-generating capability of the intake ports.
Technical Paper

Numerical Improvement of ADVISOR for Evaluating Commercial Vehicles with Traditional Powertrain Systems

2007-10-30
2007-01-4208
ADVISOR is a flexible drivetrain analysis tool, developed in MATLAB/Simulink® to compare fuel economy and emissions performance between different drivetrain configurations. This paper reports a couple of numerical issues with application of ADVISOR 2002 to commercial vehicles with traditional powertrain systems. One instance is when ADVISOR model is set up to simulate running a heavy-duty (HD) truck with an automated manual transmission (AMT) on a demanding pickup-delivery duty cycle. The other is highlighted during an analysis of a medium-duty (MD) truck with an automatic transmission (AT) where wide-open throttle, i.e., fast acceleration is requested. These two cases have shown different numerical difficulties by using ADVISOR 2002. Based on studying the details of the models, solutions to these numerical issues are developed. The simulation results will demonstrate the effectiveness of these solutions.
Technical Paper

New Insights into the Unique Operation of Small Pore Cu-Zeolite SCR Catalyst: Overlapping NH3 Desorption and Oxidation Characteristics for Minimizing Undesired Products

2014-04-01
2014-01-1542
An operational challenge associated with SCR catalysts is the NH3 slip control, particularly for commercial small pore Cu-zeolite formulations as a consequence of their significant ammonia storage capacity. The desorption of NH3 during increasing temperature transients is one example of this challenge. Ammonia slipping from SCR catalyst typically passes through a platinum based ammonia oxidation catalyst (AMOx), leading to the formation of the undesired byproducts NOx and N2O. We have discovered a distinctive characteristic, an overlapping NH3 desorption and oxidation, in a state-of-the-art Cu-zeolite SCR catalyst that can minimize NH3 slip during temperature transients encountered in real-world operation of a vehicle.
X