Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Use of Life Cycle Assessment with Crankcase Lubricants to Yield Maximum Environmental Benefit – Case Study of Residual Chlorine in Lubricant

2008-10-06
2008-01-2376
Life Cycle Assessment (LCA) is a methodology used to determine quantitatively the environmental impacts of a range of options. The environmental community has used LCA to study all of the impacts of a product over its life cycle. This analysis can help to prevent instances where a greater degree of environmental harm results when changes are made to products based on consideration of impacts in only part of the life cycle. This study applies the methodology to engine lubricants, and in particular chlorine limits in engine lubricant specifications. Concern that chlorine in lubricants might contribute to emissions from vehicle exhausts of polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF), collectively called PCDD/F, led to the introduction of chlorine limits in lubricant specifications. No direct evidence was available linking chlorine in lubricants to PCDD/F formation, but precautionary principles were used to set lubricant chlorine limits.
Technical Paper

Review of Exhaust Emissions of Compression Ignition Engines Operating on E Diesel Fuel Blends

2003-10-27
2003-01-3283
Recently, research and testing of oxygenated diesel fuels has increased, particularly in the area of exhaust emissions. Included among the oxygenated diesel fuels are blends of diesel fuel with ethanol, or E diesel fuels. Exhaust emissions testing of E diesel fuel has been conducted by a variety of test laboratories under various conditions of engine type and operating conditions. This work reviews the existing public data from previous exhaust emissions testing on E diesel fuel and includes new testing performed in engines of varied design. Emissions data compares E diesel fuel with normal diesel fuel under conditions of different engine speeds, different engine loads and different engine designs. Variations in performance under these various conditions are observed and discussed with some potential explanations suggested.
Journal Article

Powertrain Cycle for Emission Certification

2012-09-24
2012-01-2059
In August of 2011, the US Environmental Protection Agency issued new Green House Gas (GHG) emissions regulations for heavy duty vehicles. These regulations included new procedures for the evaluation of hybrid powertrains and vehicles. One of the hybrid options allows for the evaluation of an engine plus a hybrid transmission (a powertrain). For this type of testing, EPA has proposed simulating a vehicle following the hybrid vehicle test procedures, including the use of the vehicle cycles and the A to B comparison testing - as required for the full vehicle evaluation option. This paper proposes an alternative approach by defining a powertrain cycle. The powertrain cycle is based on the heavy duty engine emissions cycle - the transient FTP cycle. Simulation and test results are presented showing similar performance over the engine and vehicle cycles. This approach offers several advantages as compared to the procedure described in EPA's GHG rule.
Technical Paper

Opportunity for Diesel Emission Reductions Using Advanced Catalysts and Water Blend Fuel

2000-03-06
2000-01-0182
This paper features the results of emission tests conducted on diesel oxidation catalysts, and the combination of diesel oxidation catalysts and water blend fuel (diesel fuel continuous emulsion). Vehicle chassis emission tests were conducted using an urban bus. The paper reviews the impact and potential benefits of combining catalyst and water blend diesel fuel technologies to reduce exhaust emissions from diesel engines.
Journal Article

Measurement of Dioxin and Furan Emissions during Transient and Multi-Mode Engine Operation

2011-04-12
2011-01-1158
This study analyzed the impact of transient and multi-mode engine conditions on emissions of dioxins and furans from a variety of diesel aftertreatment configurations. Exhaust aftertreatment systems included combinations of diesel oxidation catalyst, diesel particulate filter, and either Cu/zeolite or Fe/zeolite selective catalytic reduction catalyst. EPA method TO-9A was modified for proportional exhaust gas sampling, whereas EPA method 0023A was modified for raw exhaust gas sampling. Dioxin and furan emissions were first measured with modified method TO-9A during Federal Test Procedure transient cycles, but no toxic dioxins or furans were detected. Measurements were then taken with modified method 0023A during Ramped Mode Cycles-Supplemental Emissions Test experiments. Because more rigorous pre-cleaning and sample extraction procedures were used with this method and lower detection limits were achieved by the analytical laboratory, some dioxin and furan congeners were detected.
Technical Paper

Low Volatility ZDDP Technology: Part 2 - Exhaust Catalysts Performance in Field Applications

2007-10-29
2007-01-4107
Phosphorus is known to reduce effectiveness of the three-way catalysts (TWC) commonly used by automotive OEMs. This phenomenon is referred to as catalyst deactivation. The process occurs as zinc dialkyldithiophosphate (ZDDP) decomposes in an engine creating many phosphorus species, which eventually interact with the active sites of exhaust catalysts. This phosphorous comes from both oil consumption and volatilization. Novel low-volatility ZDDP is designed in such a way that the amounts of volatile phosphorus species are significantly reduced while their antiwear and antioxidant performances are maintained. A recent field trial conducted in New York City taxi cabs provided two sets of “aged” catalysts that had been exposed to GF-4-type formulations. The trial compared fluids formulated with conventional and low-volatility ZDDPs. Results of field test examination were reported in an earlier paper (1).
Journal Article

Impact of Lubricating Oil Condition on Exhaust Particulate Matter Emissions from Light Duty Vehicles

2010-05-05
2010-01-1560
Limited technical studies to speciate particulate matter (PM) emissions from gasoline fueled vehicles have indicated that the lubricating oil may play an important role. It is unclear, however, how this contribution changes with the condition of the lubricant over time. In this study, we hypothesize that the mileage accumulated on the lubricant will affect PM emissions, with a goal of identifying the point of lubricant mileage at which PM emissions are minimized or at least stabilized relative to fresh lubricant. This program tested two low-mileage Tier 2 gasoline vehicles at multiple lubricant mileage intervals ranging from zero to 5000 miles. The LA92 cycle was used for emissions testing. Non-oxygenated certification fuel and splash blended 10% and 20% ethanol blends were used as test fuels.
Journal Article

Emissions Certification Vehicle Cycles Based on Heavy Duty Engine Test Cycles

2012-04-16
2012-01-0878
This paper describes the development vehicle cycles based on heavy duty engine test cycles for emissions certification. In the commercial vehicle and industrial equipment markets, emissions are evaluated using engine test cycles. For the on-highway market in the United States, these cycles include the transient heavy duty engine FTP test, and the steady state heavy duty engine SET test. Evaluation of engine only emissions is a practical approach given the diversity of applications, small volumes, and lack of vertical integration in the commercial vehicle market. However certain vehicle and powertrain characteristics can contribute significantly to fuel consumption and emissions. A number of approaches have been proposed to evaluate vehicle performance, and all of these vehicle evaluation methodologies require the selection of a vehicle cycle.
Technical Paper

Diesel Engine Cylinder Deactivation for Improved System Performance over Transient Real-World Drive Cycles

2018-04-03
2018-01-0880
Effective control of exhaust emissions from modern diesel engines requires the use of aftertreatment systems. Elevated aftertreatment component temperatures are required for engine-out emissions reductions to acceptable tailpipe limits. Maintaining elevated aftertreatment components temperatures is particularly problematic during prolonged low speed, low load operation of the engine (i.e. idle, creep, stop and go traffic), on account of low engine-outlet temperatures during these operating conditions. Conventional techniques to achieve elevated aftertreatment component temperatures include delayed fuel injections and over-squeezing the turbocharger, both of which result in a significant fuel consumption penalty. Cylinder deactivation (CDA) has been studied as a candidate strategy to maintain favorable aftertreatment temperatures, in a fuel efficient manner, via reduced airflow through the engine.
Technical Paper

Comparison of SCR Catalyst Performance on RMC SET Emission Cycle between an Engine and a High Flow Burner Rig

2013-04-08
2013-01-1070
Government agencies like EPA play an important role through regulation to reduce emissions and fuel consumption and to drive technological developments to reduce the environmental impact of burning petroleum fuels. Emissions testing and control is one of the leading and growing fields in the development of modern vehicles. Recently, Cummins Emissions Solutions (CES) and Southwest Research Institute (SwRI) worked jointly in order to achieve a method to conduct emissions testing efficiently and effectively. The collaborative work between the two organizations led to the usage of FOCAS HGTR™ (a diesel-based burner test rig at SwRI) to simulate the exhaust conditions generated by a 2010 ISX Cummins production engine operating over an EPA standard Ramped Modal Cycle Supplemental Emissions Test (RMC SET) cycle.
X