Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Reliability Analysis of Adhesive for PBT-Epoxy Interface

2007-04-16
2007-01-1517
PBT (polybutylene terephthalate) and epoxy adhesive, which both have superior heat resistance and environmental resistance, are a representative combination now being applied to many parts. Generally, PBT is annealed after molding at a temperature above the glass transition temperature to ensure dimensional stability when in use. But in this case, this process decreases the adhesive strength between PBT and epoxy. This study analyzes the adhesion degradation mechanism in this system and a countermeasure technology is proposed. Regarding this PBT-epoxy adhesion degradation mechanism, focus is placed on changes in the fracture surface, which is analyzed before and after annealing. From this analysis it becomes clear that generation of a WBL (weak boundary layer) is caused by non-crystallization and a migration of the PBT functional group on the adhesion surface layer.
Technical Paper

Quality Management Approach for Powertrain Control Unit

2002-10-21
2002-21-0015
In recent years, the powertrain system is becoming bigger and more sophisticated than ever, and it is very important that new powertrain systems shall be timely developed just when the market required. In this kind of new system, the quality in particular will be an important factor on the vehicle evaluation issue. With this objective in mind, DENSO has been working on the following challenges, such as the development of key technology, the improvement of quality assurance system, and engineer education to realize them. This reports a general idea on these quality management activities.
Journal Article

Development of Trivalent Chromium Passivation for Zn Platng with High Corrosion Resistance after Heating

2016-04-05
2016-01-0542
Trivalent chromium passivation is used after zinc plating for enhancing corrosion resistance of parts. In the passivating process, the amount of dissolved metal ions (for example zinc and iron) in the passivation solution increases the longer the solution is used. This results in a reduced corrosion resistance at elevated temperatures. Adding a top coat after this process improves the corrosion resistance but has an increased cost. To combat this, we strove to clarify the mechanism of decreased corrosion resistance and to develop a trivalent chromium passivation with a higher corrosion resistance at elevated temperatures. At first, we found that in parts produced from an older solution, the passivation layer has cracks which are not seen in parts from a fresh/new solution. These cracks grow when heated at temperatures over 120 degrees Celsius.
Technical Paper

Development of Sintered Bearing Material with Higher Corrosion Resistance for Fuel Pumps

2007-04-16
2007-01-0415
In recent years, due to a growing demand for improvement in the performance and reliability of automotive fuel pumps and the advancement of globalization, automotive fuel pumps are being used with inferior gasolines that include more sulfur, organic acids or compounds, compared to gasolines used in general regions. Conventionally, bearings in these fuel pumps have mainly been made of sintered bronze alloy. With this bronze alloy, however, it is difficult to achieve a significant improvement in the tribology characteristics of bearings, in order to meet the demands for performance improvement, etc., and corrosion is severe in inferior gasolines that contain highly-concentrated organic acids or sulfur and the corrosion products that accompany them. Therefore, in order to obtain fine tribology characteristics and superior corrosion resistance in gasolines with highly-concentrated organic acids and sulfur, various copper-based alloys were studied using the powder metallurgy process.
Technical Paper

Development of High Efficiency Rectifier with MOSFET in “eSC Alternator”

2017-03-28
2017-01-1228
Alternator, which supplies electric energy to a battery and electrical loads when it is rotated by engine via belt, is one of key components to improve vehicle fuel efficiency. We have reduced rectification loss from AC to DC with a MOSFET instead of a rectifier diode. It is important to turn on the MOSFET and off during a rectification period, called synchronous control, to avoid a current flow in the reverse direction from the battery. We turn it off so as to remain a certain conduction period through a body diode of the MOSFET before the rectification end. It is controlled by making a feedback process to coincide with an internal target conduction period based on the rotational speed of the alternator. We reduced a voltage surge risk at turn-off by changing the feedback gain depending on the sign of the time difference between the measured period and the target.
X