Refine Your Search

Topic

Author

Search Results

Technical Paper

Thin Ceiling Circulator to Enhance Thermal Comfort and Cabin Space

2019-04-02
2019-01-0913
In hot climate regions, there is demand for improved thermal comfort for rear occupants in vehicles not equipped with a rear air conditioner. One solution to this challenge is a circulator mounted on the ceiling. The circulator is a product designed to enhance thermal comfort for occupants by circulating the air in the cabin. The conventional circulator design, which employs a cross flow fan with a large cross section, juts into the cabin space, because it is difficult to package. Consequently, the challenge for the circulator is to provide thermal comfort for rear occupants while taking up the minimum cabin space under the ceiling. To solve this challenge, that is, to enable a substantially thinner structure, while retaining the same level of air flow delivered as before for the same thermal comfort as the conventional circulator, we divided the structure into an air outlet and an air blower.
Technical Paper

Technologies of DENSO Common Rail for Diesel Engine and Consumer Values

2004-10-18
2004-21-0075
Electronics has greatly contributed to the operation of internal combustion engines. This is especially evident in the benefits that it has brought to drivers, such as enhancing the “Fun to Drive” experience and in reducing the cost of fuel. Moreover, this progress has resulted in minimizing environmental degradation, and yet continuing to support improvements in performance. In the diesel engine, which has superb fuel economy, the innovative progress has been achieved by the common rail technology. The common rail system has the features of high injection pressure control in all engine speed range, highly precise injection control and multiple injections per combustion cycle. The latest 2nd generation of the DENSO common rail system features 1800 bar injection pressure, and five times multiple injection with fully electronic control to ensure precise small injection quantities. This technology has been commercialized into passenger car products in the European market.
Journal Article

Reduction of Cranking Noise from High Voltage Starter for One-Motor Two-Clutch Hybrid Systems

2017-03-28
2017-01-1167
In this paper, we propose a high voltage brushless AC starter that contributes to improved fuel efficiency and a reduction in the cost of the one-motor two-clutch hybrid system, which we call a 1MG2CL system. We have named it the HV starter, and it is composed of an AC motor, inverter and pinion with a shift mechanism. One of the issues with the 1MG2CL system is the high electrical energy when starting an ICE as it switches over from EV drive to HEV drive. While the ICE is starting, the main motor has to crank the ICE via the clutch; the clutch slips to absorb the main motor power, so the main motor has to output a high power to overcome the loss. Therefore, to contribute to reducing the electrical power by eliminating clutch slip losses, we developed an HV starter as a dedicated ICE starting device. Thanks to the reduction in electrical power, the HV starter is able to improve fuel efficiency and reduce system costs.
Technical Paper

Realizing Robust Combustion with High Response Diesel Injector with Controlled Diffusive Spray Nozzle and Closed Loop Injection Control

2017-03-28
2017-01-0845
The Diesel engine performance was drastically improved since the introduction of the Common Rail system in 1996. Over the years, the Common Rail technology was continuously improved to reduce the fuel consumption, engine-out emissions and enhance the drivability. However further technical improvement steps for a precise control of combustion are required to satisfy the increasing stringent worldwide emissions limits and to contribute to attractively performing Diesel powered vehicles. Common Rail injectors significantly contribute to improve the combustion. This improvement can be achieved by precisely controlling the injected fuel quantity and increasing the injection pressure. In addition to those features, a more rectangular injection rate, the capability of stable multiple injections at shorter intervals and the control of the spray shape, are required to achieve an optimized fuel mixture.
Journal Article

Prediction Method for Automobile EMI Test Result in AM Frequency Band

2017-03-28
2017-01-0014
The EMI, electromagnetic interference, is tested for automobiles and components by the method defined in the international standard, CISPR 25. Regarding the automobile test, the EMI from the component installed in the automobile is measured by the antenna of an automobile. On the other hand on the component test, the EMI from the component is measured by a mono-pole antenna set forward of the component. However, components sometimes fail the automobile test even if its passed the component test due to the difference of the method. In this case, the component has to be designed again to pass the automobile test. Therefore, the prediction method of the automobile test result is required. In this paper, we tried to modify the standard component test configuration to predict the automobile test result for a fuel pump system in AM frequency band.
Journal Article

Non-Contact Measurement Method for High Frequency Impedance of Load at the End of Wire Harness

2017-03-28
2017-01-1643
To avoid a trial and error adjustment for designing EMI filters, clarifying load impedance of operating condition, i.e., dynamic impedance of equipment is very useful. Therefore the need to a non-contact measurement method of the impedance connected to a wire harness is increasing rapidly. A measurement method using a network analyzer with two current probes was previously proposed. However, it was confirmed only up to 30 MHz. Many radio equipment operate above 30 MHz such as FM receivers and GPS receivers installed in vehicles. So increasing the measurement frequency is necessary in the auto industry. At first, we tried to expand the applicable frequency to 100 MHz, i.e., FM band. In this study, we applied the transmission line theory using the non-contact measurement method. Furthermore, in order to use the theory, the characteristic impedance and phase constant of the wire harness are required. So we made an additional measurement to estimate them.
Journal Article

Next-generation Ejector Cycle for Truck-transport Refrigerator

2009-04-20
2009-01-0973
The development of energy-saving technologies is in great demand recently to stop global warming. We are committed to developing the Ejector Cycle as an energy-saving technology for refrigerating air conditioners. The ejector, which is an energy-saving technological innovation, improves the efficiency of the refrigeration cycle by effectively using the expansion energy that is lost in the conventional steam-compression cycle, and is applicable to almost all steam-compression refrigerating air conditioners, thus improving the efficiency of the refrigeration cycle. Concerning the application of the Ejector Cycle in truck-transport refrigerators, we previously released Ejector Cycle products for large and medium-size freezer trucks, which have been favorably accepted by custom-ers.
Technical Paper

New Spray Concept Development for Dual Injection System

2017-03-28
2017-01-0835
Gasoline direct injection (GDI) systems are a main development focus for global environment issues and energy security. At the same time, it is also important to challenge further development of Multi point injection (MPI) systems for a simple and robust combustion system responding to global fuels ,required for the growing automotive markets in emerging countries, especially in the A, B vehicle segments. This paper focuses on reducing wall wetting in cold conditions and maximizing mixture cooling by fuel vaporization (preventing knocking) in high load conditions as key development points of MPI systems. We propose a dual MPI system enhancing direct flow of spray into the combustion chamber to gain part of the benefit of GDI in addition to the homogeneity advantage of an MPI system. This dual MPI system requires finer atomization with at the same time robustness against intake airflow.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Technical Paper

Modeling and Simulation Analysis of Electric Vehicle Thermal Management System Based on Distributed Parameter Method

2022-03-29
2022-01-0211
The distributed parameter method is used to establish the dynamic simulation model of the electric vehicle thermal management system and various parts, and the finite difference method is used to solve the model. A thermal management system model with same structure is established by AMESIM, and the accuracy of the dynamic simulation model is verified by comparing the deviation of the calculation result between this dynamic simulation model and AMESIM. Based on the established model, the influence of expansion valve opening on the temperature of battery pack and the influence on the heating comfort of the cabin were studied. A control strategy for the rapid cooling of the battery pack was proposed. The results show that the model established by the distributed parameter method provides quite well agreement with commercial equivalent software and can well reflect the flow state of the refrigerant in different zones of the same component.
Technical Paper

Maximizing Coasting of 48 V Vehicles with Cold-Storage Evaporator

2018-05-30
2018-37-0023
One of the main features of 48 V vehicles is the ability to coast at high speeds with the Internal Combustion Engine (ICE) off. This can be realized due to the high torque and power the 48 V motor-generator provides which allows a quick and smooth re-cranking of the ICE. The coasting feature reduces the fuel consumption depending on frequency and duration of the coasting events. This depends in turn on driving pattern, driving style, State-of-Charge of the 48 V and 12 V batteries and the air-conditioning (A/C) system. In summer, if the A/C runs with a mechanical belt-driven compressor, the cabin inlet air temperature from the evaporator inevitably increases during each coasting event as the ICE turns off and cannot operate the compressor. If the evaporator temperature reaches a certain threshold at which the cabin comfort is noticeably affected, the ICE is re-cranked for resuming air-conditioning.
Technical Paper

Ignition and Soot Formation/Oxidation Characteristics of Compositionally Unique International Diesel Blends

2019-04-02
2019-01-0548
With the global adoption of diesel common rail systems and the wide variation in composition of local commercial fuels, modern fuel injection systems must be robust against diverse fuel properties. To bridge the knowledge gap on the effects of compositional variation for real commercial fuels on spray combustion characteristics, the present work quantifies ignition and soot formation/oxidation in three unique, international diesel blends. Schlieren imaging, excited-state hydroxyl radical (OH*) chemiluminescence imaging and diffused back-illumination extinction imaging were employed to quantify vapor penetration, ignition, and soot formation and oxidation for high-pressure sprays in a constant-volume, pre-burn chamber. The three fuels were procured from Finland, Japan and Brazil and have cetane numbers of 64.1, 56.1 and 45.4, respectively.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Glow Plug with Combustion Pressure Sensor

2003-03-03
2003-01-0707
Combustion-pressure-data-based feedback control of fuel injection and EGR is the most promising diesel system, since it can reduce fuel consumption and emissions, as well as noise and vibration, and improve the evaluation efficiency for adapting engine performance to. We developed a combustion pressure sensor installed inside the glow plug. This is superior in maintainability and ease of installation, and can detect the combustion pressure in each cylinder at high accuracy and low cost, with no need for engine modification.
Journal Article

Ejector Energy-Saving Technology for Mobile Air Conditioning Systems

2017-03-28
2017-01-0120
This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
Technical Paper

ECU Structure Strategy to Detect Lift Timing of GDI Solenoid Injectors with High Precision

2017-03-28
2017-01-1628
In gasoline direct injection (GDI) systems, various injection types are needed to reduce emissions and improve fuel consumption. This requires high-precision injection in the region in which the amount of injection is small. Achieving injection of a small amount of fuel using GDI solenoid injectors requires the use of the half-lift region. In this region, however, the variation in the injection amount tends to increase due to the variation in the lift behavior of the injectors, posing the problem of how to achieve high-precision injection. To reduce the variation, we analyzed the lift timing out of the injector current and voltage signal with the ECU in an attempt to adjust the amount of injection.
Technical Paper

Diesel Powertrain Energy Management via thermal Management and Electrification

2017-03-28
2017-01-0156
The coming Diesel powertrains will remain as key technology in Europe to achieve the stringent 2025 CO2 emission targets. Especially for applications which are unlikely to be powered by pure EV technology like Light Duty vehicles and C/D segment vehicles which require a long driving range this is the case. To cope with these low CO2 targets the amount of electrification e.g. in form of 48V Belt-driven integrated Starter Generator (BSG) systems will increase. On the other hand the efficiency of the Diesel engine will increase which will result in lower exhaust gas temperatures resulting in a challenge to keep the required NOx reduction system efficiencies under Real Drive Emissions (RDE) driving conditions. In order to comply with the RDE legislation down to -7 °C ambient an efficient thermal management is one potential approach. Commonly utilized means to increase exhaust gas temperature are late injection and/or intake throttling, which enable sufficient NOx reduction efficiency.
Technical Paper

Development of the Large Type Electric-Driven Refrigerator for the HV Truck

2017-03-28
2017-01-0137
In respect to the present large refrigerator trucks, sub-engine type is the main product, but the basic structure does not change greatly since the introduction for around 50 years. A sub-engine type uses an industrial engine to drive the compressor, and the environmental correspondence such as the fuel consumption, the emission is late remarkably. In addition, most of trucks carry the truck equipment including the refrigerator which consumes fuel about 20% of whole vehicle. Focusing on this point, the following are the reports about the system development plan for fuel consumption reduction of the large size refrigerator truck. New concept is to utilize electrical power from HV system to power the electric-driven refrigerator. We have developed a fully electric-driven refrigerator system, which uses regenerated energy that is dedicated for our refrigerator system.
Technical Paper

Development of a New MOS Rectifier for High-Efficiency Alternators

2017-03-28
2017-01-1240
For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
Technical Paper

Development of a Compact and High-Performance Radiator for Thermal Management of Environmentally-Friendly Cars

2018-04-03
2018-01-0087
To comply with increasing fuel efficiency regulations, a low temperature radiator (LT radiator) is required to cool the charge-air system of a turbocharged engine. These engines are important to use for environmentally-friendly cars. Since heavy-duty and high-performance cars demand high cooling performance, the main radiator alone is typically insufficient in meeting the vehicle’s cooling requirements. An additional radiator installed in the front of the wheel-well is required to meet the extra cooling demand. In order to install this radiator in the front of the wheel-well, guaranteed performance in the limited packaging space and impact resistance of the leading tube edge are required. We developed the Supplementary Inner-Fin Radiator (SIR) which achieves the compact, high-performance, and durability requirements by use of an inner-fin tube (I/F tube). The purpose of this paper is to report our design approach and product specifications of the SIR.
X