Refine Your Search

Topic

Author

Search Results

Journal Article

2-Drive Motor Control Unit for Electric Power Steering

2017-03-28
2017-01-1485
The electric power steering (EPS) is increasing its number since there are many advantages compared to hydraulic power steering. The EPS saves fuel and eliminates hydraulic fluid. Also, it is more suitable to the cooperation control with the other vehicle components. The EPS is now expanding to the heavier vehicle with the advance in the power electronics. In order to meet customer's needs, such as down-sizing, lower failure rate and lower price, we have developed the new motor control unit (MCU) for the EPS. The motor and the electric control unit (ECU) were integrated for the better installation. We adopted new technologies of redundant 2-drive design for more safe EPS. “2-drive Motor Control technology” which consists of dual winding, two torque sensors and two inverter drive units. In our developed MCU, even if there is a failure in one of the drive unit, the assistance of the EPS can be maintained with the other drive unit.
Technical Paper

3D Spray Measurement System for High Density Fields Using Laser Holography

2002-03-04
2002-01-0739
To develop injection nozzles and to improve the numerical simulation technology of fuel spray, a measuring technology to analyze the process of disintegration into droplets accurately is required. Performances required by a spray droplets measuring device are: “ability to measure in the combustion condition inside the engine cylinder”, “ability to measure the diameter of spray droplets in high-density fields”, “ability to measure the structure of spray droplets in 3D”, and an improved measuring accuracy of non-spherical droplets. These elements are required in order to analyze the spray droplets structure of gasoline direct injection engines. As a promising method to satisfy these requirements, the laser holography method has been already suggested. However, it has some drawbacks, such as a difficulty in measuring spray droplets in high-density fields and over a long analysis period.
Technical Paper

4th Generation Diesel Piezo Injector (Realizing Enhanced High Response Injector)

2016-04-05
2016-01-0846
Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Technical Paper

A New Method to Analyze Fuel Behavior in a Spark Ignition Engine

1995-02-01
950044
In SI engines with port injection system, fuel behavior both in the intake port and in the cylinder has significant influence on the transient A/F characteristics and HC emissions [1]. Therefore, to improve the engine performance, it is very important to understand fuel behavior in the intake port and in the cylinder [2, 3]. This paper describes the following three unique methods to analyze fuel behavior in port injected SI engines and some test results. (1) Observation of fuel behavior in the intake port, using a transparent intake air tube and a strobe synchronized TV-photographic system. (2) Observation of fuel behavior in the cylinder, using a glass cylinder and fluorescent fuel. (3) Measurement of fuel wall wetting in the intake port and in the cylinder, using the engine with electronically controlled hydraulically driven in-take/exhaust valves.
Technical Paper

A Novel Beamspace Technology Based On 2FCW for Radar Target Detection

2017-03-28
2017-01-0025
In the last decade, radar-based Advanced Driver Assistance Systems (ADAS) have improved safety of transportation. Today, the standardization of ADAS established by New Car Assessment Program (NCAP) is expected to expand its market globally. One of the key technologies of ADAS is the rear-side monitoring system such as Blind Spot Warning (BSW) and Closing Vehicle Warning (CVW). It is required to expand its detection range so that it can monitor not only nearside targets for BSW, but farther targets for CVW. These applications can be achieved using two radar sensors installed at rear-side corner of the vehicle. However, the expanded detection range causes undesirable target detections and decreases target recognition performance. In this paper, a novel solution to improve the performance using DCMP(Directional-Constrained Minimization of Power)-based Beamspace technology using Two-frequency continuous wave (2FCW also known as FSK) is introduced.
Technical Paper

A Sense of Distance and Augmented Reality for Stereoscopic Vision

2018-04-03
2018-01-1036
Head-up displays (HUDs) give visual information to drivers in an easy to understand manner and prevent traffic accidents. Augmented reality head-up displays (AR-HUDs) display the driving information overlaid on the actual scenery. The AR-HUD must allow the visual information and the actual scene to be viewed at the same time, and a sense of depth and distance are key factors in achieving this. Binocular parallax used in stereoscopic 3D display is one of the most useful methods of providing a sense of depth and distance. Generally, stereoscopic 3D displays must limit the image range to within Panum’s fusional area to ensure fusion of the stereoscopic images. However, when using a stereoscopic 3D display for an AR-HUD, the image range must extend beyond Panum’s fusional area to allow the visual information and the actual scene to be displayed at the same time.
Technical Paper

A Wearable Device for Traffic Safety - A Study on Estimating Drowsiness with Eyewear, JINS MEME

2016-04-05
2016-01-0118
This paper presents detection technology for a driver monitoring system using JINS MEME, an eyewear-type wearable device. Serious accidents caused by human error such as dozing while driving or inattentive driving have been increasing recently in Japan. JINS MEME is expected to contribute to reducing the number of traffic deaths by constantly monitoring the driver with an ocular potential sensor. This paper also explains how a driver’s drowsiness level can be estimated from information on their blink rate, which can be calculated from the ocular potential.
Technical Paper

Advanced Electronics for a Clean Diesel Engine Management System

2006-10-16
2006-21-0059
With the economic development of countries around the world led by BRICs(Brazil, Russia, India, China), the total number of automobiles in the world continues to rise. From the standpoint of preserving limited petroleum resources and reducing CO2 emissions, improved fuel consumption is necessary if we are to continue enjoying the use of automobiles. In Europe, significant development of diesel engine technology as a power source for automobiles has taken place to reduce fuel consumption and to enhance the “Fun to Drive” experience, and market share of diesel engines has increased in this area. However, with increasing environmental awareness worldwide, all areas of the globe are seeing tightened regulations for not only fuel consumption, but also exhaust emissions, including those for PM(Particulate Matter) and NOx. Of these regulations, the requirement for vehicles to satisfy the US Tier 2 Bin 5 rating, regardless of whether they are gasoline or dieselpowered, is the most stringent.
Technical Paper

Analysis of Influence Factors for Partial Discharge Inception Voltage between Magnet-Wires on Rotating Machines

2016-04-05
2016-01-1226
In automobiles, Integrated Starter Generators (ISGs) are important components since they ensure significant fuel economy improvements. With motors that operate at high voltage such as ISGs, it is important to accurately know partial discharge inception voltages (PDIVs) for the assured insulation reliability of the motors. However, the PDIVs vary due to various factors including the environment (temperature, atmospheric pressure and humidity), materials (water absorption and degradation) and voltage waveforms. Consequently, it is not easy either empirically or analytically to ascertain the PDIVs in a complex environment (involving, for example, high temperature, low atmospheric pressure and high humidity) in which many factors vary simultaneously, as with invehicle environments. As a well-known method, PDIVs can be analyzed in terms of two voltage values, which are the breakdown voltage of the air (called “Paschen curve”) and the shared voltage of the air layer.
Technical Paper

Analysis of Mixture Formation of Direct Injection Gasoline Engine

1998-02-23
980157
Direct injection gasoline engines require extremely advanced control of air-fuel mixture in order to achieve good stratified combustion. The method of examining quality of mixture formation in combustion chambers is essential for the achievement. In this research, air-fuel mixture in combustion chamber of the TOYOTA D-4 engine was analyzed in space and time by visualization as well as Air/Fuel ratio measurement by multi-point and high response techniques. Thus the effects that injection timing, swirl and fuel pressure exerted to mixture formation were elucidated.
Technical Paper

Analysis of Oil Consumption at High Engine Speed by Visualization of the Piston Ring Behaviors

2000-10-16
2000-01-2877
In internal combustion engine, it is well-known that oil infiltrates the combustion chamber through the clearance between the piston ring and the cylinder bore with vertical reciprocating motion of the piston, leading to an increase in oil consumption. The deformation of the cylinder bore is inevitable to some extent in the actual engine because of the tightening of cylinder head bolt and heat load._As to the function of the piston ring, it is desirable that it conforms to such bore deformation. The author et al. made a glass cylinder engine in which closed piston ring gap could be visualized, based on the idea that piston ring conformability to the sliding surface of bore could be evaluated from minute changes of the piston ring gap. This newly-devised visualized engine was an in-line 4-cylinder engine, capable of running up to 6,000 rpm, in which the closed gap of piston ring could be observed minutely during engine operation.
Technical Paper

Analysis of Oil Consumption by Observing Oil Behavior Around Piston Ring Using a Glass Cylinder Engine

1989-09-01
892107
The reduction of engine oil consumption rate is one of the important concerns for automotive engineers. However, it has been difficult to solve this subject, since the oil consumption mechanism has not yet been elucidated. In this study, to clarify the oil loss mechanism via the piston rings, a transparent glass cylinder engine was used to observe oil behavior between cylinder wall and piston surface. For photographic observation, a high speed camera, a still camera. and a TV camera were used. Since the new photographic system by using TV camera with a synchro - flash and a synchro-memory was applied, it was also possible to observe the oil behavior in detail. Moreover, a new visual method by which colored oil was injected from the various points on the piston surface and traced was developed for easy analysis of oil movement around the piston ring.
Technical Paper

Analysis of Sulfur-Related White Smoke Emissions from DPF System

2015-09-01
2015-01-2023
In a Diesel engine with a Diesel particulate filter (DPF) system, high-sulfur fuel causes white smoke containing odorous and harmful pollutants during DPF regeneration. This study investigates the conditions and mechanisms of sulfur-related white smoke generation. Engine and vehicle tests found that sulfur compounds emitted from the engine accumulated on the catalysts in the DPF system and were emitted as white smoke during DPF regeneration. The white smoke was observed when the catalyst temperature was more than 450°C, under conditions such as the early stage of DPF regeneration. Model gas tests were conducted to clarify the mechanism of the white smoke. It was found that SO2 emitted from the engine was oxidized to SO3 on the catalyst, which was then mainly absorbed on the oxidation catalyst support (Al2O3). Then, the absorbed SO3 was desorbed and converted into white smoke.
Technical Paper

Analysis of Tribofilm Formed by Electric Brush Sliding for Long Life Starter Motor

2019-04-02
2019-01-0181
Global exhaust emission regulations are becoming stricter, and vehicles equipped with the idle stop system (ISS) are increasing. Recently, starters for vehicles equipped with ISS are required to improve operation feel when speedily restarted. To satisfy this demand, starters must rotate at higher rotational speeds, and heavier wear in their brushes may cause problems. Tribofilm formed on commutators surface by the brush sliding is an important factor in the brush commutator wear, because tribofilm is said to have a property to increase lubricity and decrease mechanical wear in brushes and commutator, as well as to improve commutation and decrease arc wear. Therefore, for reducing brush commutator wear, it is considered effective to promote film formation by improving materials. However, few researches have been conducted to evaluate the relationship between brush materials and tribofilm formation.
Technical Paper

Analyzing the Influence of Gasoline Characteristics on Transient Engine Performance

1991-10-01
912392
It has been reported that the middle range of gasoline distillation temperatures strongly affects vehicle driveability and exhaust hydrocarbon (HC) emissions, and that MTBE(CH3-O-C4H9)- blended gasoline causes poor driveability during warm-up. The present paper is concerned with the results of subsequent detailed research on gasoline characteristics, exhaust emissions and driveability. In this paper, first it is demonstrated by using four models of passenger cars having different types of exhaust gas treatment system that decreased 50% distillation temperature (T50) reduces exhaust HC emission. This result indicates lowering T50 in the market will contribute to improving air quality. Secondly gasoline behavior in the intake manifold is investigated by using an engine on the dynamometer in order to clarify the mechanisms of HC emission increase and poor engine response which are caused by high T50.
Journal Article

Approaches for Secure and Efficient In-Vehicle Key Management

2016-04-05
2016-01-0070
Modern vehicles utilize various functionalities that require security solutions such as secure in-vehicle communication and ECU authentication. Cryptographic keys are the basis for such security solutions. We propose two approaches for secure and efficient invehicle key management. In both approaches, an ECU acting as a Key Master in the vehicle is required. The first approach is based on SHE. The Key Master generates and distributes new keys to all ECU based on the SHE key update protocol. The second approach performs key establishment based on key derivation. The Key Master sends a trigger in form of a counter and all ECUs derive new keys based on the received counter value and pre-shared keys. It is thus possible to handle in-vehicle key management without the need for an OEM backend to manage all keys. This reduces cost and complexity of the solution.
Journal Article

Artist-Centric New HMI Software Development Workflow: Development of Real-Time 3D Rendering Engine for Reconfigurable Instrument Clusters

2013-04-08
2013-01-0425
Instrument clusters that display all information on a TFT-LCD screen, also known as reconfigurable instrument clusters, have become the new trend in automotive interiors. DENSO mass-produced the world's first reconfigurable instrument cluster in 2008. To satisfy customer requirements, large quantities of resources were required. Coupled with an iterative process due to requirement changes, development costs became very high. Reducing development costs was vital in order to expand the reconfigurable instrument cluster products line. One solution was to use existing human machine interface (HMI) tools. However, most HMI tools are geared toward software developers and not graphic artists. Furthermore, each tool has its own unique method for image and scene creation, creating an ineffective and sometimes difficult environment for artists familiar with industry-leading computer graphics (CG) software to learn and use the tools.
Technical Paper

Battery Heating System for Electric Vehicles

2015-04-14
2015-01-0248
We have developed Li-ion battery heating system which is direct resistance heating for hybrid electric vehicles (HEV), plug-in hybrid vehicles (PHEV) and electric vehicles (EV) by use of an inverter and a motor. One relay is added between a positive terminal of Li-ion battery and one-phase (e.g. U-phase) of a three-phase motor. When additional relay is turned on, the motor coils, IGBTs (Insulated-gate bipolar transistor) and diodes in the inverter and a smoothing capacitor for the inverter constitute buck-boost DC to DC converter. IGBTs are controlled to repeat charging and discharging between the battery and the smoothing capacitor. We made a system prototype and examined battery heating capability. And also we optimized charging and discharging frequency from impedance and current to improve heat generation. This method can increase battery temperature from −20 degrees C to 0 degrees C in 5 minutes and can extend EV driving range.
Technical Paper

Cam and Crank Rotation Sensor with Reverse Rotation Detection

2006-04-03
2006-01-1460
In order to improve the performance of Engine Management System (EMS), it becomes more important to accurately detect the position of cam and crank with rotation sensors, usually as referred cam and crank sensor. In addition, expectations for the idle stop system to follow the reinforcement of emission regulations require cam and crank sensors to implement the function of reverse rotation detection. This paper discusses our development of a new generation rotation sensor (MR3) that uses AMR (Anisotropic Magneto Resistance) for accurate rotation detection to meet all system and market demands with minimum number of components to achieve high quality but less expensive price.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
X