Refine Your Search

Topic

Author

Search Results

Technical Paper

A High Efficiency Magnetic Activated Sludge Reactor for Wastewater Processing

1999-07-12
1999-01-1945
Technologies for the recycling of water are a primary goal of NASA’s advanced life support programs. Biological processes have been identified as an attractive method for wastewater processing. A fundamental new bioreactor based on a traditional activated sludge process is demonstrated that treats hygiene wastewater using magnetic iron oxide particles agglomerated with microbial cells. In this bioreactor, microbes are suspended in magnetic flocs in a wastewater medium. Instead of a traditional gravity separator used in activated sludge operations, a magnetic separator removes the microbial flocs from the outlet stream. The reactor separation operates continuously, independent of gravitational influences. The reactor has been able to simultaneously remove 98% of high levels of both nitrogenous and organic carbon impurities from the wastewater as well as achieve acceptably low levels of total suspended solids.
Technical Paper

A Test Plan for Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

2008-06-29
2008-01-2113
The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning to compare the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source.
Technical Paper

A Total Organic Carbon Analyzer for Space Potable Water Systems

1996-07-01
961570
A Total Organic Carbon (TOC) Analyzer has been developed for a Life Sciences Risk Mitigation Flight Experiment to be conducted on Spacehab and the Russian space station, Mir. Initial launch is scheduled for December 1996 (flight STS-81). The analyzer will be tested on the Orbiter in the Spacehab module, including when the Orbiter is docked at the Mir space station. The analyzer is scheduled to be launched again in May 1997 (STS-84) when it will be transferred to Mir. During both flights the analyzer will measure the quality of recycled and ground-supplied potable water on the space station. Samples will be archived for later return to the ground, where they will be analyzed for comparison to in-flight results. Water test samples of known composition, brought up with the analyzer, also will be used to test its performance in microgravity. Ground-based analyses of duplicates of those test samples will be conducted concurrently with the in-flight analyses.
Technical Paper

Advanced Life Support Sizing Analysis Tool (ALSSAT) Using Microsoft® Excel

2001-07-09
2001-01-2304
The development of an optimum regenerative Advanced Life Support (ALS) system for future Mars missions has been a crucial issue in the space industry. Considering the numerous potential technologies for subsystems with the complexity of the Air Revitalization System (ARS), Water Reclamation System (WRS), and Waste Management System of the Environmental Control and Life Support System (ECLSS), it will be time-consuming and costly to determine the best combination of these technologies without a powerful sizing analysis tool. Johnson Space Center (JSC), therefore, initiated the development of ALSSAT using Microsoft® Excel for this purpose. ALSSAT has been developed based upon the ALS Requirement and Design Definition Document (Ref. 18). In 1999, a paper describing the development of ALSSAT with its built-in ARS mass balance model (Ref. 21) was published in ICES.
Technical Paper

Advanced Space Suit Portable Life Support Subsystem Packaging Design

2006-07-17
2006-01-2202
This paper discusses the Portable Life Support Subsystem (PLSS) packaging design work done by the NASA and Hamilton Sundstrand in support of the 3 future space missions; Lunar, Mars and zero-g. The goal is to seek ways to reduce the weight of PLSS packaging, and at the same time, develop a packaging scheme that would make PLSS technology changes less costly than the current packaging methods. This study builds on the results of NASA's in-house 1998 study, which resulted in the “Flex PLSS” concept. For this study the present EMU schematic (low earth orbit) was used so that the work team could concentrate on the packaging. The Flex PLSS packaging is required to: protect, connect, and hold the PLSS and its components together internally and externally while providing access to PLSS components internally for maintenance and for technology change without extensive redesign impact. The goal of this study was two fold: 1.
Technical Paper

Aerogel-Based Insulation for Advanced Space Suit

2002-07-15
2002-01-2316
Future spacesuits will require thermal insulation protection in low-earth orbit (LEO), in the near-earth neighborhood and in planetary environments. In order to satisfy all future exploration needs and lower production and maintenance costs, a common thermal insulation is desirable that will perform well in all these environments. A highly promising material is a fiber-reinforced aerogel composite insulation currently being developed at the Johnson Space Center. This paper presents an overview of aerogels and their manufacture, a summary of the development of a flexible fiber-based aerogel for NASA by Aspen Aerogels, Inc., and performance data of aerogels relative to flexible commercial insulation. Finally, future plans are presented of how an aerogel-based insulation may be integrated into a spacesuit for ground testing as well as for a flight configuration.
Technical Paper

Analysis of the Effect of Age on Shuttle Orbiter Lithium Hydroxide Canister Performance

2005-07-11
2005-01-2768
Recent efforts have been pursued to establish the usefulness of Space Shuttle Orbiter lithium hydroxide (LiOH) canisters beyond their certified two-year shelf life, at which time they are currently considered “expired.” A stockpile of Orbiter LiOH canisters are stowed on the International Space Station (ISS) as a backup system for maintaining ISS carbon dioxide Canisters with older (CO2) control. Canister with older pack dates must routinely be replaced with newly packed canisters off-loaded from the Orbiter Middeck. Since conservation of upmass is critical for every mission, the minimization of canister swap-out rate is paramount. LiOH samples from canisters with expired dates that had been returned from the ISS were tested for CO2 removal performance at the NASA Johnson Space Center (JSC) Crew and Thermal Systems Division (CTSD). Through this test series and subsequent analysis, performance degradation was established.
Technical Paper

Automatic Thermal Control Through a LCVG for a Spacesuit

1999-07-12
1999-01-1970
Automatic thermal control (ATC) was investigated for implementation into a spacesuit to provide thermal neutrality to the astronaut through a range of activity levels. Two different control concepts were evaluated and compared for their ability to maintain subject thermal comfort. Six test subjects, who were involved in a series of three tests, walked on a treadmill following specific metabolic profiles while wearing the Mark III spacesuit in ambient environmental conditions. Results show that individual subject comfort was effectively provided by both algorithms over a broad range of metabolic activity. ATC appears to be highly effective in providing efficient, “hands-off” thermal regulation requiring minimal instrumentation. Final selection of an algorithm to be implemented in an advanced spacesuit system will require testing in dynamic thermal environments and consideration of technology for advancement in instrumentation and controller performance.
Technical Paper

Biofilm Formation and Control in a Simulated Spacecraft Water System: Three Year Results

1992-07-01
921310
Two simulated spacecraft water systems are being used to evaluate the effectiveness of iodine for controlling microbial contamination within such systems. An iodine concentration of about 2.0 mg/L is maintained in one system by passing ultrapure water through an iodinated ion exchange resin. Stainless steel coupons with electropolished and mechanically-polished sides are being used to monitor biofilm formation. Results after three years of operation show a single episode of significant bacterial growth in the iodinated system when the iodine level dropped to 1.9 mg/L. This growth was apparently controlled by replacing the iodinated ion exchange resin, thereby increasing the iodine level. The second batch of resin has remained effective in controlling microbial growth down to an iodine level of 1.0 mg/L. Scanning electron microscopy indicates that the iodine has impeded but may have not completely eliminated the formation of biofilm.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Chemical Analysis and Water Recovery Testing of Shuttle-Mir Humidity Condensate

1999-07-12
1999-01-2029
Humidity condensate collected and processed in-flight is an important component of a space station drinking water supply. Water recovery systems in general are designed to handle finite concentrations of specific chemical components. Previous analyses of condensate derived from spacecraft and ground sources showed considerable variation in composition. Consequently, an investigation was conducted to collect condensate on the Shuttle while the vehicle was docked to Mir, and return the condensate to Earth for testing. This scenario emulates an early ISS configuration during a Shuttle docking, because the atmospheres intermix during docking and the condensate composition should reflect that. During the STS-89 and STS-91 flights, a total volume of 50 liters of condensate was collected and returned. Inorganic and organic chemical analyses were performed on aliquots of the fluid.
Technical Paper

Chemical Analysis of Potable Water and Humidity Condensate: Phase One Final Results and Lessons Learned

1999-07-12
1999-01-2028
Twenty-nine recycled water, eight stored (ground-supplied) water, and twenty-eight humidity condensate samples were collected on board the Mir Space Station during the Phase One Program (1995-1998). These samples were analyzed to determine potability of the recycled and ground-supplied water, to support the development of water quality monitoring procedures and standards, and to assist in the development of water reclamation hardware. This paper describes and summarizes the results of these analyses and lists the lessons learned from this project. Results show that the recycled water and stored water on board Mir, in general, met NASA, Russian Space Agency (RSA), and U.S. Environmental Protection Agency (EPA) standards.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

Comparative Space Suit Boot Test

2002-07-15
2002-01-2315
In applications that require space-suited crewmembers to traverse rough terrain, boot fit and mobility are of critical importance to the crewmember's overall performance capabilities. Current extravehicular activity (EVA) boot designs were developed for micro-gravity applications, and as such, incorporate only minimal mobility features. Recently three advanced space suit boot designs were evaluated at the National Aeronautics and Space Administration Johnson Space Center (NASA/JSC). The three designs included: 1) a modified Space Shuttle suit (Extravehicular Mobility Unit or EMU) boot, 2) the Modified Experiment Boot designed and fabricated by RD & PE Zvezda JSC, and 3) a boot designed and fabricated by the David Clark Company. Descriptions of each configuration and rationale for each boot design are presented.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Development and Evaluation of an Advanced Water-Jacketed High Intensity Discharge Lamp

2003-07-07
2003-01-2455
During the period July 2001 to March 2002, the performance of a water-jacketed high intensity discharge lamp of advanced design was evaluated within a lamp test stand at The University of Arizona (UA), Controlled Environment Agriculture Center (CEAC) in Tucson, Arizona. The lamps and test stand system were developed by Mr. Phil Sadler of Sadler Machine Company, Tempe, Arizona, and supported by a Space Act Agreement between NASA-Johnson Space Center (JSC) and UA. The purpose was for long term testing of the prototype lamp and demonstration of an improved procedure for use of water-jacketed lamps for plant production within the close confines of controlled environment facilities envisioned by NASA within Bioregenerative Life Support Systems. The lamp test stand consisted of six, 400 watt water-cooled, high pressure sodium HID lamps, mounted within a framework.
Technical Paper

Development of Pressure Swing Adsorption Technology for Spacesuit Carbon Dioxide and Humidity Removal

2006-07-17
2006-01-2203
Metabolically produced carbon dioxide (CO2) removal in spacesuit applications has traditionally been accomplished utilizing non-regenerative Lithium Hydroxide (LiOH) canisters. In recent years, regenerative Metal Oxide (MetOx) has been developed to replace the Extravehicular Mobility Unity (EMU) LiOH canister for extravehicular activity (EVA) missions in micro-gravity, however, MetOx may carry a significant weight burden for potential use in future Lunar or planetary EVA exploration missions. Additionally, both of these methods of CO2 removal have a finite capacity sized for the particular mission profile. Metabolically produced water vapor removal in spacesuits has historically been accomplished by a condensing heat exchanger within the ventilation process loop of the suit life support system.
Technical Paper

Development of a Contaminant Insensitive Sublimator

2006-07-17
2006-01-2217
Sublimators have been used for heat rejection for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators are excellent candidates for heat rejection devices on future vehicles like the Crew Exploration Vehicle (CEV), the Lunar Surface Access Module (LSAM), and future spacesuits. One of the drawbacks of previous designs was sensitivity to contamination in the feedwater. Undissolved contaminants can be removed with filters, but dissolved contaminants would be left in the pores of the porous plates in which the feedwater freezes and sublimates. These contaminants build up and clog the relatively small pores (~3–6 μm), thereby blocking the flow of the feedwater, reducing the available area for freezing and sublimation, and degrading the performance of the sublimator. For the X-38 program, a new sublimator design was developed by NASA-JSC that is less sensitive to contaminants.
Technical Paper

Development of a Gravity Independent Nitrification Biological Water Processor

2003-07-07
2003-01-2560
Biological water processors are currently being developed for application in microgravity environments. Work has been performed to develop a single-phase, gravity independent anoxic denitrification reactor for organic carbon removal [1]. As a follow on to this work it was necessary to develop a gravity independent nitrification reactor in order to provide sufficient nitrite and nitrate to the organic carbon oxidation reactor for the complete removal of organic carbon. One approach for providing the significant amounts of dissolved oxygen required for nitrification is to require the biological reactor design to process two-phase gas and liquid in micro-gravity. This paper addresses the design and test results overview for development of a tubular, two-phase, gravity independent nitrification biological water processor.
X