Refine Your Search

Topic

Author

Search Results

Technical Paper

Water and Heat Balance in a Fuel Cell Vehicle with a Sodium Borohydride Hydrogen Fuel Processor

2003-06-23
2003-01-2271
The National Renewable Energy Laboratory (NREL) collaborated with Millennium Cell and DaimlerChrysler to study heat and water management in a sodium borohydride (NaBH4) storage/processor used to supply hydrogen to a fuel cell in an automotive application. Knowledge of heat and water flows in this system is necessary to maximize the storage concentration of NaBH4, which increases vehicle range. This work helps evaluate the NaBH4 system's potential to meet the FreedomCAR program technical target of 6 wt% hydrogen for hydrogen storage technologies. This paper also illustrates the advantages of integrating the NaBH4 hydrogen processor with the fuel cell.
Journal Article

Ultra-Compact Power System for Long-Endurance Small Unmanned Aerial Systems

2012-10-22
2012-01-2177
Air-launched Small Unmanned Aerial Systems (SUASs) provide critical information to warfighters, but are currently limited by the power and energy available from small electric propulsion systems. This paper describes proof-of-concept testing of a novel power system for SUASs. The power system comprises a compact hydrogen generator and a hydrogen PEM fuel cell. The hydrogen generator uses ammonia borane (AB) as a solid chemical hydrogen storage material and heats the AB to produce hydrogen through thermal decomposition. The innovative ignition and control process generates highly pure hydrogen on-demand from a system that is very compact, lightweight, and rugged. We built a proof-of-concept hydrogen generator and used it to supply hydrogen to a small PEM fuel cell. The proof-of-concept generator used prototypical AB, heat source, control scheme, and purification media to absorb trace amounts of ammonia, borazine, and carbon monoxide (CO).
Technical Paper

The Department of Energy's Hydrogen Safety, Codes, and Standards Program: Status Report on the National Templates1

2006-04-03
2006-01-0325
A key to the success of the national hydrogen and fuel cell codes and standards developments efforts to date was the creation and implementation of national templates through which the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory (NREL), and the major standards development organizations (SDOs) and model code organizations coordinate the preparation of critical standards and codes for hydrogen and fuel cell technologies and applications and maintain a coordinated national agenda for hydrogen and fuel cell codes and standards
Technical Paper

Retail Infrastructure Costs Comparison for Hydrogen and Electricity for Light-Duty Vehicles

2014-04-01
2014-01-1969
Both hydrogen and plug-in electric vehicles offer significant social and environmental benefits to enhance energy security and reduce criteria and greenhouse gas emissions from the transportation sector. However, the rollout of electric vehicle supply equipment (EVSE) and hydrogen retail stations (HRS) requires substantial investments with high risks due to many uncertainties. We compare retail infrastructure costs on a common basis - cost per mile, assuming fueling service to 10% of all light-duty vehicles in a typical 1.5 million person city in 2025. Our analysis considers three HRS sizes, four distinct types of EVSE and two distinct EVSE scenarios. EVSE station costs, including equipment and installation, are assumed to be 15% less than today's costs. We find that levelized retail capital costs per mile are essentially indistinguishable given the uncertainty and variability around input assumptions.
Technical Paper

Quantification of Biodiesel Content in Fuels and Lubricants by FTIR and NMR Spectroscopy

2006-10-16
2006-01-3301
The use of biodiesel requires the development of proper quantification procedures for biodiesel content in blends and in lubricants (fuel dilution in oil). Although the ester carbonyl stretch at 1746 wavenumbers (cm-1) is the most prominent band in the IR spectrum of biodiesel, it is difficult to use for quantification purposes due to a severe fluctuation of absorption strength from sample to sample, even at the same biodiesel content. We have demonstrated that the ester carbonyl fluctuation is not caused by variation in the ester alkyl chain length; but is most likely caused by the degree of hydrogen bonding of the ester functional group with water in the sample. Water molecules can form complexes with the ester compound affecting the strength of the ester carbonyl band. The impact of water on quantification of the biodiesel content of blends was significant, even for B100 samples that met the proposed ASTM D6751 water limit of 500 ppm by D6304 (Karl Fischer Methdod).
Technical Paper

Pulmonary Toxicity of Lunar Highland Dust

2009-07-12
2009-01-2379
Lunar dust exposures occurred during the Apollo missions while the crew was in the lunar module on the moon's surface and especially when micro-gravity conditions were attained during rendezvous in lunar orbit. Crews reported that the dust was irritating to the eyes, and in some cases, respiratory symptoms were elicited. NASA's current vision for lunar exploration includes stays of 6 months on the lunar surface hence the health effects of periodic exposure to lunar dust in the habitat need to be assessed. NASA is performing this assessment with a series of in vitro and in vivo tests with authentic lunar dust. Our approach is to “calibrate” the intrinsic toxicity of lunar dust by comparison to a relatively low toxicity dust (TiO2) and a highly toxic dust (quartz) using intrapharyngeal instillation of the dusts to mice. A battery of indices of toxicity is assessed at various time points after the instillations.
Technical Paper

Program Development for Exercise Countermeasures

1992-07-01
921140
Research indicates that adaptation to a microgravity environment includes physiological changes to the cardiovascular-respiratory, musculoskeletal, and neurosensory systems. Many of these alterations emerge even during space flights of short duration. Therefore, the advancement of manned space flight from Shuttle to Space Station Freedom (SSF) requires development of effective methods for augmenting the ability of humans to maintain functional performance. Thus, it is the goal of NASA to minimize the consequences of microgravity-induced deconditioning to provide optimal in-flight performance (intra- and extra-vehicular activities), suitable return to a pedestrian environment, and nominal physiological postflight recovery for an expeditious return-to-flight physical status.
Technical Paper

Predicting the Fuel Economy Impact of “Cold-Start” for Reformed Gasoline Fuel Cell Vehicles

2003-06-23
2003-01-2253
Hydrogen fuel cell vehicles (FCVs) appear to be a promising solution for the future of clean and efficient personal transportation. Issues of how to generate the hydrogen and then store it on-board to provide satisfactory driving range must still be resolved before they can compete with conventional vehicles. Alternatively, FCVs could obtain hydrogen from on-board reforming of gasoline or other fuels such as methanol or ethanol. On-board reformers convert fuel into a hydrogen-rich fuel stream through catalytic reactions in several stages. The high temperatures associated with fuel processing present an engineering challenge to warm up the reformer quickly and efficiently in a vehicle environment. Without a special warmup phase or vehicle hybridization, the reformer and fuel cell system must provide all power to move the vehicle, including ¼ power in 30 s, and ½ power in 3 min to satisfy the Federal Test Procedure (FTP) cycle demands.
Technical Paper

Pilot Investigation: Nominal Crew Induced Forces in Zero-G

1992-07-01
921155
Vibrational disturbance magnitude and frequency on space-flight missions is often a critical factor regarding mission success. Both materials processing experiments and astronomical investigations have specific microgravity environmental requirements. Recent efforts have been made to quantify the microgravity environment on the Space Shuttle Columbia by measuring gravity levels produced by specific mission events such as Orbiter engine burns, treadmill and ergometer activities, crew sleep periods, rotating chair operations, and body mass measurement operations. However, no measurements have been made of specific, nominal crewmember activities such as translating about the middeck, flight-deck, or in the Spacelab. This report presents pilot-study data of test subject forces induced by intravehicular activities such as push-offs and landings with both hands and feet. Five subjects participated in this investigation.
Technical Paper

Oxygen From Lunar Soils

1996-07-01
961595
We have conducted experiments on 16 lunar soils and 3 lunar volcanic glass samples to study the extraction of oxygen, an important resource for future lunar bases. The samples were chosen to span the range of composition and mineralogy represented in the Apollo collection. Each sample was reduced in flowing hydrogen for 3 hours at 1050°C. The dominant effect was reduction of Fe2+ (as FeO) in minerals and glass to iron metal, with concomitant release of oxygen. Oxygen extraction was strongly correlated with initial Fe2+ abundance but varied among mineral and glass phases. The experimental reduction of lunar soil and glass provides a method for assessing the oxygen production potential for sites on the lunar surface from lunar orbit. Our results show that oxygen yield from lunar soils can be predicted from knowledge of only one parameter, total iron content. This parameter can be measured from orbit by gamma ray spectrometry or multispectral imaging.
Journal Article

Overcoming the Range Limitation of Medium-Duty Battery Electric Vehicles through the use of Hydrogen Fuel-Cells

2013-09-24
2013-01-2471
Battery electric vehicles possess great potential for decreasing lifecycle costs in medium-duty applications, a market segment currently dominated by internal combustion technology. Characterized by frequent repetition of similar routes and daily return to a central depot, medium-duty vocations are well positioned to leverage the low operating costs of battery electric vehicles. Unfortunately, the range limitation of commercially available battery electric vehicles acts as a barrier to widespread adoption. This paper describes the National Renewable Energy Laboratory's collaboration with the U.S. Department of Energy and industry partners to analyze the use of small hydrogen fuel-cell stacks to extend the range of battery electric vehicles as a means of improving utility, and presumably, increasing market adoption.
Technical Paper

Operation of an Electronic Nose Aboard the Space Shuttle and Directions for Research for a Second Generation Device

2000-07-10
2000-01-2512
A flight experiment to test the operation of an Electronic Nose developed and built at JPL and Caltech was done aboard STS-95 in October-November, 1998. This ENose uses conductometric sensors made of insulating polymer-carbon composite films; it has a volume of 1.7 liters, weighs 1.4 kg including the operating computer and operates on 1.5 W average power. In the flight experiment, the ENose was operated continuously for 6 days and recorded the sensors' response to changes in air in the mid-deck of the orbiter. The ENose had been trained to identify and quantify ten common contaminants at the 24-hour Spacecraft Maximum Allowable Concentration (SMAC) level. Most SMACs are on the order of 10-100 ppm. The experiment was controlled by collecting air samples daily and analyzing them using standard analytical techniques after the flight. The device is microgravity insensitive.
Technical Paper

On-Orbit Performance of the Major Constituent Analyzer

2002-07-15
2002-01-2404
The Major Constituent Analyzer (MCA) was activated on-orbit on 2/13/01 and provided essentially continuous readings of partial pressures for oxygen, nitrogen, carbon dioxide, methane, hydrogen and water in the ISS atmosphere. The MCA plays a crucial role in the operation of the Laboratory ECLSS and EVA operations from the airlock. This paper discusses the performance of the MCA as compared to specified accuracy requirements. The MCA has an on-board self-calibration capability and the frequency of this calibration could be relaxed with the level of instrument stability observed on-orbit. This paper also discusses anomalies the MCA experienced during the first year of on-orbit operation. Extensive Built In Test (BIT) and fault isolation capabilities proved to be invaluable in isolating the causes of anomalies. The process of fault isolation is discussed along with development of workaround solutions and implementation of permanent on-orbit corrections.
Journal Article

Off-Gassing and Particle Release by Heated Polymeric Materials

2008-06-29
2008-01-2090
Polymers are one of the major constituents in electrical components. A study investigating pre-combustion off-gassing and particle release by polymeric materials over a range of temperatures can provide an understanding of thermal degradation prior to failure which may result in a fire hazard. In this work, we report simultaneous measurements of pre-combustion vapor and particle release by heated polymeric materials. The polymer materials considered for the current study are silicone and Kapton. The polymer samples were heated over the range 20 to 400°C. Response to vapor releases were recorded using the JPL Electronic Nose (ENose) and Industrial Scientific's ITX gas monitor configured to detect hydrogen chloride (HCl), carbon monoxide (CO) and hydrogen cyanide (HCN). Particle release was monitored using a TSI P-TRAK particle counter.
Technical Paper

Modifications of Physiological Processes Concerning Extravehicular Activity in Microgravity

1994-06-01
941334
The incidence of DCS in null gravity appears to be considerably less than predicted by 1-g experiments. In NASA studies in 1-g, 83% of the incidents of DCS occur in the legs. We report first on a study with a crossover design that indicated a considerable reduction in the decompression Doppler bubble grade in the lower extremities in subjects in simulated microgravity (bed rest) as compared to themselves when ambulatory in unit gravity. Second we describe the results of a cardiovascular deconditioning study using a tail-suspended rat model. Since there may be a reduction in bubble production in 0-g, this would reduce the possibility of acquiring neurological DCS, especially by arterial gas embolism. Further, cardiovascular deconditioning appears to reduce the pulmonary artery hypertension (secondary to gas embolization) necessary to effect arterialization of bubbles.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Integrated Atmosphere Revitalization System Description and Test Results

1983-07-11
831110
Regenerative-type subsystems are being tested at JSC to provide atmosphere revitalization functions of oxygen supply and carbon dioxide (CO2) removal for a future Space Station. Oxygen is supplied by an electrolysis subsystem, developed by General Electric, Wilmington, Mass., which uses the product water from either the CO2 reduction subsystem or a water reclamation process. CO2 is removed and concentrated by an electrochemical process, developed by Life Systems, Inc., Cleveland, Ohio. The concentrated CO2 is reduced in a Sabatier process with the hydrogen from the electrolysis process to water and methane. This subsystem is developed by Hamilton Standard, Windsor Locks, Conn. These subsystems are being integrated into an atmosphere revitalization group. This paper describes the integrated test configuration and the initial checkout test. The feasibility and design compatibility of these subsystems integrated into an air revitalization system is discussed.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

Hydrogen: Primary or Supplementary Fuel for Automotive Engines

1976-02-01
760609
Hydrogen, gasoline, and mixtures thereof were compared as fuels for lean-burn engines. Hydrogen for the mixed fuels tests was generated by partial oxidation of gasoline. Hydrogen combustion yielded the highest thermal efficiency at any NOx level. Gasoline yielded the second highest thermal efficiency for NOx levels greater than or approximately equal to two gm/mi. For lower NOx levels and high vehicle inertia weights, progressively more hydrogen supplementation was the second most efficient system. For vehicle inertia weights below 5000 lbm (2300 kg), the statutory NOx standard (0.4 gm/mi) could be met with one lb/hr (0.13 g/s) hydrogen supplementation.
X